Гравитационный манёвр

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Гравитационный манёвр для ускорения объекта (гравитационная праща)
Гравитационный манёвр для замедления объекта

Гравитационный манёвр — разгон, замедление или изменение направления полёта космического аппарата под действием гравитационных полей небесных тел. Обычно используется для экономии топлива и дополнительного разгона автоматических межпланетных станций при полётах к дальним планетам Солнечной системы.

Наиболее выгодны гравитационные манёвры у планет-гигантов, но нередко используются манёвры у Венеры, Земли, Марса и даже Луны.

Физическая суть процесса[править | править вики-текст]

Рассмотрим траекторию космического аппарата, пролетающего вблизи какого-нибудь большого небесного тела, например, Юпитера. В начальном приближении мы можем пренебречь действием на космический аппарат гравитационных сил от других небесных тел.

В системе отсчёта, связанной с Юпитером, космический аппарат разгоняется, проходит точку с минимальным расстоянием до планеты, а потом замедляется. Общая траектория космического аппарата представляет собой гиперболу, причём скорости до и после манёвра совпадают — с точки зрения наблюдателя, находящегося на Юпитере, никакого приращения скорости КА не происходит, только изменение направления его движения.

Теперь посмотрим на ту же ситуацию в системе отсчёта, связанной с Солнцем. В этой системе отсчёта планета движется по орбите (в случае Юпитера, со скоростью более 13 км/с), поэтому скорость космического аппарата относительно Солнца может измениться. Юпитер увлекает КА за собой в своём движении по орбите, добавляя ему скорость своего орбитального движения (возможно, не полностью). Однако, поскольку при этом происходит также и изменение направления движения КА, то модуль вектора приращения скорости может значительно превосходить орбитальную скорость движения планеты.

Таким образом, без затрат топлива можно изменить кинетическую энергию космического аппарата. Фактически, следует говорить о перераспределении кинетической энергии движения планеты и космического аппарата. Насколько возрастает (убывает) кинетическая энергия аппарата, настолько же падает (возрастает) кинетическая энергия движения планеты по её орбите. Поскольку масса искусственного космического аппарата исчезающе мала в сравнении с массой планеты (даже Луны), то изменения параметров орбиты планеты при этом оказываются исчезающе малыми, и ими можно полностью пренебречь. Например, если аппарат массой 1000 кг получает в поле тяготения Луны изменение скорости своего движения на 1 км/с, то скорость движения Луны по орбите вокруг Земли изменится лишь на несколько миллиардных долей ангстрема в секунду (то есть несколько миллиардных долей поперечника атома водорода). Другие тела Солнечной системы на движение Луны влияют на несколько порядков сильнее.

Максимально возможные приращения скорости, км/с:

Меркурий Венера Земля Луна Марс Юпитер Сатурн Уран Нептун Плутон
3,005 7,328 7,910 1,680 3,555 42,73 25,62 15,18 16,73 1,09

Эффект Оберта[править | править вики-текст]

Под гравитационным манёвром иногда понимается комбинированный способ ускорения космических аппаратов (эффект Оберта). Суть данного способа заключается в том, что при выполнении гравитационного манёвра в «нижней» части траектории аппарат включает двигатель и сжигает топливо, получая дополнительное ускорение и переводя таким образом энергию топлива в кинетическую энергию корабля. Кроме того, за счёт этого при «подъёме» аппарата из гравитационного колодца[en] планеты его кинетическая энергия не тратится на увеличение потенциальной энергии сожжённого топлива, что позволяет получить дополнительный выигрыш в скорости.

Примеры использования[править | править вики-текст]

Межпланетная траектория зонда «Кассини»

Российские историки космонавтики[кто?] утверждают, что идея гравитационного манёвра была на практике осуществлена во время полёта космического аппарата «Е-2А» № 1 (с 1963 — Луна-3) — автоматической станции, которой впервые в мире удалось осуществить фотографирование обратной стороны Луны.

В 1974 году гравитационный манёвр использовал космический аппарат Маринер-10 — было произведено сближение с Венерой, после которого аппарат направился к Меркурию.

За счёт гравитационных манёвров скорость «Вояджера-1» (~17 км/с) в марте 2011 года была выше, чем текущая скорость «Новых горизонтов» (~15,9 км/с), хотя после старта с Земли скорость последнего была самой высокой для рукотворных объектов (16,21 км/с[1]).

Сложную комбинацию гравитационных манёвров использовали АМС «Кассини» (для разгона аппарат использовал гравитационное поле трёх планет — Венеры (дважды), Земли и Юпитера) и «Розетта» (четыре гравитационных манёвра около Земли и Марса).

в худ. литературе

Художественное описание подобного манёвра можно встретить в фантастическом романе А. Кларка 2010: Одиссея 2.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. New Horizons Mission to Pluto
  2. Michael Martin Nieto, John D. Anderson Earth Flyby Anomalies // arxiv.org, 7 Oct 2009

Ссылки[править | править вики-текст]