Эта статья является кандидатом в хорошие статьи

Бета-окисление: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
→‎История: викификация
Строка 15: Строка 15:


[[Жирные кислоты]], входящие в состав естественных жиров животных и растений, имеют чётное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию [[Масляная кислота|масляной кислоты]]. После очередного β-окисления масляная кислота становится [[Ацетоуксусная кислота|ацетоуксусной]]. Последняя затем гидролизуется до двух молекул уксусной кислоты<ref name="E" />.
[[Жирные кислоты]], входящие в состав естественных жиров животных и растений, имеют чётное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию [[Масляная кислота|масляной кислоты]]. После очередного β-окисления масляная кислота становится [[Ацетоуксусная кислота|ацетоуксусной]]. Последняя затем гидролизуется до двух молекул уксусной кислоты<ref name="E" />.
Однако в то время, механизмы окисления жирных кислот, происходящие при β-С атоме были ещё неизвестны<ref>{{cite journal|last1=Knoop|first1=Franz|title=Der Abbau aromatischer Fettsäuren im Tierkörper|journal=Beitr Chem Physiol Pathol|date=1904|volume=6|pages=150–162|accessdate=2 March 2015}}</ref><ref>{{cite journal|last1=Houten|first1=Sander Michel|last2=Wanders|first2=Ronald J. A.|title=A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation|journal=Journal of Inherited Metabolic Disease|date=2 March 2010|volume=33|issue=5|pages=469–477|doi=10.1007/s10545-010-9061-2|url=http://link.springer.com/article/10.1007%2Fs10545-010-9061-2|accessdate=2 March 2015}}</ref>. В 1948-1949 гг. Кеннеди и Ленинджер установили, что процесс окисления жирных кислот происходит в [[митохондрия]]х. Линен с сотрудниками (1954-1958) описал основные ферментативные процессы окисления жирных кислот<ref name="A" />.
Однако в то время, механизмы окисления жирных кислот, происходящие при β-С атоме были ещё неизвестны<ref>{{cite journal|last=Knoop|first=Franz|title=Der Abbau aromatischer Fettsäuren im Tierkörper|journal=Beitr Chem Physiol Pathol|date=1904|volume=6|pages=150–162|accessdate=2 March 2015}}</ref><ref>{{cite pmid|20195903}}</ref>. В 1948-1949 гг. Кеннеди и Ленинджер установили, что процесс окисления жирных кислот происходит в [[митохондрия]]х. Линен с сотрудниками (1954-1958) описал основные ферментативные процессы окисления жирных кислот<ref name="A" />.


Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот<ref name="A" /><ref name="E" />.
Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот<ref name="A" /><ref name="E" />.

Версия от 23:19, 10 мая 2016

Бе́та-окисле́ние (β-окисление), также цикл Кноопа-Линена, — метаболический процесс деградации жирных кислот[англ.][1]. Своё название процесс получил по 2-ому углеродному атому (С-3 или β-положение) от карбоксильной группы жирной кислоты, который подвергается окислению и последовательному отделению от молекулы. Продуктами каждого цикла β-окисления являются FADH2, NADH и ацетил-CoA. Реакции β-окисления и последующего окисления ацетил-CоА в цикле Кребса служат одним из основных источников энергии для синтеза ATP по механизму окислительного фосфорилирования[2][3].

В эукариотических клетках β-окисление происходит исключительно в аэробных условиях в матриксе митохондрий или пероксисомах, у растений этот процесс осуществляется в глиоксисомах.

Процесс β-окисления представляет собой специфический путь деградации жирных кислот. Он является одним из главных источников энергии, служащей для синтеза ATP[2].

Все реакции многостадий­ного окисления ускоряются специфическими ферментами. β-Окисление высших жирных кислот является универсальным биохи­мическим процессом, протекающим во всех живых организмах. У млекопитающих этот процесс происходит во многих тканях, в первую очередь в печени, почках и сердце. Ненасыщенные высшие жирные кислоты (олеиновая, линолевая, линоленовая и др.) предварительно восстанавливаются до предельных кислот.

Помимо β-окисления, являющийся основным процессом деградации жирных кислот у животных и человека, существуют ещё α-окисление и ω-окисление. α-Окисление встречается как у растений, так и у животных, однако, весь процесс происходит в пероксисомах[4]. ω-Окисление менее распространено среди животных (позвоночные), встречается главным образом у растений[4]. Процесс ω-окисления происходит в эндоплазматическом ретикулуме (ЭР).

История

β-Окисление было открыто в 1904 году немецким химиком Францем Кноопом[нем.] (Franz Knoop) в опытах с кормлением собак различными жирными кислотами, в которых один атом водорода на концевом атоме ω-С углерода метильной группы -CH3 был замещен на фенильный радикал -С6H5[1][3].

Францем Кноопом было выдвинуто предположение, что окисление молекулы жирной кислоты в тканях организма происходит в β-положении. В результате от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты со стороны карбоксильной группы[3].

Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют чётное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидролизуется до двух молекул уксусной кислоты[3]. Однако в то время, механизмы окисления жирных кислот, происходящие при β-С атоме были ещё неизвестны[5][6]. В 1948-1949 гг. Кеннеди и Ленинджер установили, что процесс окисления жирных кислот происходит в митохондриях. Линен с сотрудниками (1954-1958) описал основные ферментативные процессы окисления жирных кислот[1].

Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот[1][3].

Метаболические процессы

β-Окисление представляет собой последовательность процессов:

  • Активацию жирных кислот, происходящую в цитоплазме клетки с образованием ацила-CoA
  • Транспортировку ацила-CoA через двойную мембрану митохондрии посредством карнитина (трансмембранный перенос)
  • Внутримитохондриальное β-окисление (происходит в матриксе).

Активация жирных кислот

Жирные кислоты, которые образовались в клетке путём гидролиза триацилглицеридов или поступившие в неё из, крови должны быть активированы, так как сами по себе они являются метаболическими инертными веществами, вследствие этого не могут быть подвержены биохимическим реакциям, включая и окисление. Процесс их активирования происходит в цитоплазме при участии ATP, кофермента A (HS-СoA) и ионов Mg2+ Реакция катализируется ферментом ацил-CoA-синтетазой жирных кислот с длинной цепью (Long-chain-fatty-acid—CoA ligase, КФ 6.2.1.3), процесс является эндергоническим, протекает за счёт использования энергии гидролиза молекулы ATP:

Ацил-CоА-синтетазы находятся как в цитоплазме, так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии. Активация этих жирных кислот происходит в матриксе митохондрий[2].

Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-CоА-синтетазами, расположенными на внешней стороне внешней мембраны митохондрий.

Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой (КФ 3.6.1.1):

При этом происходит сдвиг равновесия реакции в сторону образования ацил-СоА[2].

Поскольку процесс активации жирных кислот происходит в цитоплазме, то далее необходим транспорт ацил-СоА через мембрану внутрь митохондрии.

Транспортировка жирных кислот через митохондриальную мембрану

Схема транспорта ацила через митохондриальную мембрану посредством карнитина. 1) Процесс активирования жирной кислоты. 2) Процесс переноса ацила посредством карнитина. CPTI — карнитин-пальмитоилтрансфераза I, CPTII - карнитин-пальмитоилтрансфераза II.

Транспортировка жирных кислот с длинной цепью через плотную митохондриальную мембрану осуществляется посредством карнитина. В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I, CPTI, КФ 2.3.1.21), катализирующий реакцию с образованием ацилкарнитина (ацильная группа переносится с атома серы CoA на гидроксильную группу карнитина с образованием ацилкарнитина (карнитин-СOR)), который диффундирует через внутреннюю митохондриальную мембрану[2][3]:

R-CO~SCoA + карнитин ↔ карнитин-COR + CoA-SH

Образовавшийся ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью фермента карнитин-ацилкарнитин-транслоказы (CACT)[2].

После прохождения ацилкарнитина (карнитин-СOR) через мембрану митохондрии происходит обратная реакция — расщепление ацилкарнитина при участии CoA-SH и фермента митохондриальной карнитинацил-СоА-трансферазы или карнитинацилтрансферазы II (карнитин-пальмитоилтрансфераза II, CPTII, КФ 2.3.1.21):

CoA-SH + карнитин-COR ↔ R-CO~SCoA + карнитин

Таким образом, ацил-СоА становится доступным для ферментов β-окисления. Свободный карнитин возвращается на цитоплазматическую сторону внутренней мембраны митохондрии мембраны митохондрий той же транслоказой[7][2][3].

После этого ацил-СоА включается в реакции β-окисления.

Процесс трансмембранного переноса жирных кислот может ингибироваться малонил-СоА[8].

Внутримитохондриальное окисление жирных кислот

В матриксе митохондрии происходит окисление жирных кислот в цикле Кнооппа-Линена. В нём участвуют четыре фермента, которые последовательно действуют на ацил-CоА. Конечным метаболитом данного цикла является ацетил-CoA. Сам процесс состоит из четырёх реакций.

Наименование реакции Схема реакции Фермент образовавшийся продукт
Дегидрирование активированной жирной кислоты (ацил-CоА). β-Окисление начинается с дегидрирования ацил-CоА FAD-зависимой ацил-СоА дегидрогеназой жирных кислот с длиной цепью (LCAD) с образованием двойной связи между α- и β-атомами углерода (С-2 и С-3) в продукте реакции — еноил-СоА. Восстановленный в этой реакции кофермент FADH2 передаёт атомы водорода в ЦПЭ на кофермент Q. В результате синтезируются 2 молекулы ATP.
Ацил-СоА-дегидрогеназа (КФ 1.3.99.3) Транс-Δ2-еноил-CоА
Реакция гидратации. Ненасыщенный ацил-CоА (еноил-CоА) при участии фермента еноил-CоА-гидратазы присоединяет молекулу воды. В результате образуется β-гидроксиацил-CоА. Реакция обратима и стереоспецифична, образовавшийся продукт имеет L-форму.
Еноил-CоА-гидратаза (КФ 4.2.1.17) L-β-гидроксиацил-CоА
NAD+ — зависимое окисление или вторая реакция дегидрирования. Образовавшийся L-β-гидроксиацил-CоА затем окисляется. Реакция катализируется NAD+-зависимой дегидрогеназой.
L-β-гидроксиацетилдегидрогеназа (КФ 1.1.1.35) L-β-ацетил-СоА
Тиолазная реакция. В этой реакции β-кетоацил-CоА взаимодействует с коферментом А. В результате происходит расщепление β-кетоацил-CоА и образуется укороченный на два углеродных атома ацил-СоА и двууглеродный фрагмент в виде ацетил-CоА. Данная реакция катализируется ацетил-CоА-ацилтрансферазой (или β-кетотиолазой).
β-Кетотиолаза (КФ 2.3.1.9) Ацил-CоА и Ацетил-CoА

Образовавшийся ацетил-CоА подвергается окислению в цикле Кребса, а ацил-CоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-CоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-CоА. FADH2 и NADH·H поступают прямо в дыхательную цепь[1].

Для полной деградации длинноцепочечной жирной кислоты цикл должен многократно повторяться, так, например, для стеарил-CоА (С17Н35СО~SCoA) необходимы восемь циклов[9].

Особенности окисления жирных кислот с нечётным числом углеродных атомов

mini
mini

В результате окисления жирных кислот с нечётным числом углеродных атомов образуются не только ацетил-CоА, FADH2 и NADH, но и одна молекула пропионил-CоА (C2H5-CO~SCoA).

Пропионил-CоА превращается в сукцинил-CоА последовательно. Карбоксилирование пропионил-CоА осуществляется под действием пропионил-CоA-карбоксилазы (КФ 4.1.1.41) (коферментом этого фермента служит биотин (витамин B7) — переносчик карбоксигрупп; реакция требует также ATP). Реакция стереоспецифична. Продуктом реакции является S-изомер метилмалонил-CоА, который катализируется метилмалонил-CоА-рацемазой (КФ 5.1.99.1) в R-изомер. Образовавшийся R-изомер метилмалонил-CоА под действием фермента метилмалонил-CоА-мутазы (КФ 5.4.99.2) (кофермент которой дезоксиаденозилцианокобаламин является производным витамина B12) превращается в сукцинил-CоА, который далее вступает в цикл Кребса[1].

Окисление ненасыщенных жирных кислот

Ненасыщенные жирные кислоты (НЖК) составляют почти половину от общего количества жирных кислот в организме человека. Особенности β-окисления таких кислот определяются положением и числом двойных связей. Двойные связи (-C=C-) природных ненасыщенных жирных кислот (олеиновой, линолевой и т.д.) имеют цис-конфигурацию, а в CоА-эфирах ненасыщенных кислот, являющихся промежуточными продуктами при β-окислении насыщенных жирных кислот, двойные связи имеют транс-конфигурацию. β-Окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между третьим и четвёртым атомами углерода. Затем фермент еноил-КоА-изомераза (КФ 5.3.3.8) перемещает двойную связь из положения Δ3-4 в положение Δ2-3 и изменяет цис-конформацию двойной связи на транс-, которая требуется для β-окисления. Далее процесс протекает также, как и для насыщенных кислот[1][2][3].

При окислении жирных кислот, имеющих две (-С=C-C-C=C-) и более ненасыщенные связи, требуется еще один дополнительный фермент β-гидроксиацил-СоА-эпимераза (КФ 1.1.1.35).

Скорость окисления ненасыщенных жирных кислот много выше, чем насыщенных, что обусловлено наличием двойных связей. Например, если взять за эталон скорость окисления насыщенной стеариновой кислоты, то скорость окисления олеиновой в 11, линолевой в 114, линоленовой в 170, а арахидоновой почти в 200 раз выше, чем стеариновой[1].

Энергетический баланс процесса

В результате переноса электронов по ЦПЭ от FADH2 и NADH синтезируется по 5 молекул ATP (2 от FADH2, и 3 от NADH). В случае окисления пальмитиновой кислоты проходит 7 циклов β-окисления (16/2 - 1 = 7), что ведёт к образованию 5•7 = 35 молекул ATP. В процессе β-окисления пальмитиновой кислоты образуется n молекул ацетил-CoA, каждая из которых, при полном сгорании в цикле трикарбоновых кислот, даёт 12 молекул ATP, а 8 молекул дадут 12•8 = 96 молекул ATP.

Таким образом, всего при полном окислении пальмитиновой кислоты образуется 35+96=131 молекула ATP. Однако с учётом одной молекулы ATP, которая гидролизуется до AMP, то есть тратятся 2 макроэргические связи или две ATP, в самом начале на процесс активирования (образования пальмитоил-CоА) общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131 - 2 = 129 молекул[3].

Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Формула для расчёта общего количества ATP, которые генерируются в результате процесса β-окисления:

где n — количество атомов углерода в молекуле жирной кислоты.


Энергетический расчёт β-окисления для некоторых жирных кислот, представлен в виде таблицы.

Жирная кислота Кол-во молекул ATP генерируемых на 1 молекулу жирной кислоты Кол-во затраченных молекул ATP Общий энергетический выход молекул ATP
Каприловая кислота C7H15COOH 63 2 63-2=61
Лауриновая кислота С11Н23COOH 97 2 97-2=95
Миристиновая кислота С13Н27СООН 102 2 102-2=100
Пентадециловая кислота С14Н29СООН 110,5 2 110,5-2=108,5
Пальмитиновая кислота С15Н31СООН 131 2 131-2=129
Маргариновая кислота С16Н33СООН 139,5 2 139,5-2=137,5
Стеариновая кислота С17Н35СООН 148 2 148-2=146
Арахиновая кислота С19Н39СООН 165 2 165-2=163

Во многих тканях окисление жирных кислот — важный источник энергии. Это ткани с высокой активностью ферментов цикла Кребса и цепи переноса электронов — клетки красных скелетных мышц, сердечная мышца (миокард), почки. Например, эритроциты, в которых отсутствуют митохондрии, не могут окислять жирные кислоты. В то же время жирные кислоты не могут служить источником энергии для мозга и других нервных тканей, так как они не проходят через гематоэнцефалический барьер, вследствие их гидрофобных свойств. Скорость обмена жирных кислот в нервных тканях на порядок ниже чем, например, в скелетных мышцах[2]. Поэтому в таких ситуациях, особенно при длительном голодании, печень перерабатывает около 50 % поступающих в неё жирных кислот в другие источники энергии — кетоновые тела, которые может утилизировать нервная ткань.

Внемитохондриальное окисление жирных кислоты

Помимо β-окисления жирных кислот, происходящего в митохондриях существует и внемитохондриальное окисление. Жирные кислоты, имеющие бóльшую длину цепи (от С20), не могут быть окислены в митохондриях из-за наличия плотной двойной мембраны, которая воспрепятствует процессу переноса их через межмембранное пространство. Поэтому окисление длиноцепочечных жирных кислот (С2022 и более) происходит в пероксисомах. В пероксисомах процесс β-окисления жирных кислот протекает в модифицированном виде. Продуктами окисления в данном случае являются ацетил-CoA, октаноил-CоА и пероксид водорода Н2О2. Ацетил-CоА образуется на стадии, катализируемой FAD-зависимой дегидрогеназой. Ферменты пероксисом не атакуют жирные кислоты с короткими цепями, и процесс β-окисления останавливается при образовании октаноил-CоА.

Данный процесс не сопряжён с окислительным фосфорилированием и генерацией ATP и поэтому октаноил-CоА и ацетил-CоА переходят с CоА на карнитин и направляются в митохондрии, где окисляются с образованием ATP[7].

Активация пероксисомального β-окисления происходит при избыточном содержании в потребляемой пищи жирных кислот начиная с С20, а также при приёме гиполипидемических лекарственных препаратов.

Регуляция

Скорость регуляции процесса β-окисления включает несколько факторов:

  • Соотношений ATP/AMP и NADH/NAD+, так же, как и скорость реакций ЦПЭ и общего пути катаболизма;
  • состояния голодания или сытости (т.е. соотношения инсулин — глюкагон);
  • активности регуляторного фермента карнитин-пальмитоилтрансферазы I (CPTI);
  • доступности субстрата — жирных кислот;
  • потребности клетки в энергии;
  • доступности кислорода[2].

Скорость β-окисления зависит также от активности фермента карнитин-пальмитоилтрансферазы I (CPTI). В печени этот фермент ингибируется малонил-CoA, веществом, образующимся при биосинтезе жирных кислот.

В мышцах карнитин-пальмитоилтрансфераза I (CPTI) также ингибируется малонил-CoA. Хотя мышечная ткань не синтезирует жирные кислоты, в ней имеется изофермент ацетил-CoA-карбоксилазы, синтезирующий малонил-CoA для регуляции β-окисления. Данный изофермент фосфорилируется протеинкиназой А, которая активируется в клетках под действием адреналина, и AMP-зависимой протеинкиназой и таким образом происходит его ингибирование; концентрация малонил-CoA снижается. Вследствие этого, при физической работе, когда в клетке появляется AMP, под действием адреналина активируется β-окисление, однако, его скорость зависит ещё и от доступности кислорода. Поэтому β-окисление становится источником энергии для мышц только через 10-20 минут после начала физической нагрузки (так называемые аэробные нагрузки), когда приток кислорода к тканям увеличивается[10].

Нарушения процесса

Дефекты карнитиновой транспортной системы

Дефекты карнитиновой транспортной системы проявляются в ферментопатиях и дефицитных состояний карнитина в организме человека.

Дефицитные состояния карнитина

Наиболее распространены дефицитные состояния, связанные с потерей карнитина во время некоторых состояний организма:

  • Ацидурия; больные, страдающие органической ацидурией, теряют большое количество карнитина, который выделяется из организма в форме конъюгатов с органическими кислотами;
  • при проведении длительного гемодиализа;
  • при длительном лечении больных сахарным диабетом препаратами сульфонилмочевины, которые являются ингибиторами фермента карнитинпальмитоил-трасферазы I (CPTI);
  • низкая активность ферментов, катализирующих синтез карнитина;
  • врожденные дефекты фермента карнитинпальмитоил-трасферазы I (CPTI), отвечающего за транспортировку ацилированного карнитина (карнитин-СOR) через мембрану митохондрии[2].

Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса β-окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания свободных жирных кислот (СЖК) в плазме крови, мышечная слабость (миастения), а также накопление липидов[7].

Ферментопатии

При дефекте гена карнитин-пальмитоилтрансферазы I — СРТ1 (гораздо реже гена СРТ2) развивается печёночная форма недостаточности фермента, которая приводит к гипогликемии и понижению содержания кетоновых тел в плазме крови. Дефект гена карнитин-пальмитоилтрансферазы II СРТ2 вызывает у взрослых миопатии (периодические мышечные боли, мышечная слабость, подёргивания, миоглобинурия), у новорождённых — фатальную печёночную форму (гипераммониемия, увеличенная активность сывороточных трансаминаз, гепатомегалия, некетотическая гипогликемия, кома). Для недостаточности карнитин-пальмитоилтрансферазы II также характерна кардиомегалия[7][11].

Генетические нарушения ацил-CoA-дегидрогеназ жирных кислот средней цепи

В митохондриях имеется 3 вида ацил-CoA-дегидрогеназ, окисляющих жирные кислоты с длинной, средней или короткой цепью радикала. Жирные кислоты по мере укорочения радикала в процессе β-окисления могут последовательно окисляться этими ферментами. Генетический дефект дегидрогеназы жирных кислот со средней длиной радикала наиболее распространён по сравнению с другими наследственными заболеваниями - 1:15 000. Частота дефектного гена MCAD (ген, кодирующий ацил-CoA-дегидрогеназы средней цеп, КФ 1.3.8.7) среди европейской популяции — 1:40. Это аутосомно-рецессивное заболевание, возникающее в результате замены Т на А в 985-й позиции гена[2]. Проявляется в накоплении жирных кислот средней цепи (особенно каприловой) и их производных в крови и вторичным дефицитом карнитина. Характерными симптомами являются приступы рвоты, летаргическое состояние, сильнейшая некетотическая гипогликемия, вызванная обильной утилизацией глюкозы (особенно опасна для новорожденных), может развиться кома и возможен летальный исход. Большую опасность болезнь представляет у детей, так как среди них наблюдается самая большая летальность (до 60%)[8].

Генетические нарушения ацил-CoA-дегидрогеназ жирных кислот с очень длинной углеродной цепью

Аутосомно-рецессивное тяжёлое генетическое заболевание встречается с частотой 1:3000-1:50000 у новорожденных стран Европы и США. Обусловлено мутацией гена ACADVL, который кодирует ацил-CoA-дегидрогеназу жирных кислот с очень длинной углеродной цепью (КФ 1.3.8.9) Данный фермент участвует в митохондриальном β–окислении жирных кислот, углеродная цепь которых содержит 14—20 атомов. Болезнь характеризуется накоплением жирных кислот (С1420) в организме. Негативные проявления выражаются в поражениях тканей головного мозга (энцефалопатии), сердца (кардиомиопатии), печени (жировая инфильтрация). Симптомы схожи с MCAD. Существуют несколько форм дефицита ацил-КоА-дегидрогеназы жирных кислот с очень длинной углеродной цепью:

  • системная;
  • печёночная;
  • миопатическая.

Системная форма встречается часто у новорожденных или детей раннего возраста и имеет самую высокую летальность (до 30%). Наиболее тяжёлая и опасная форма заболевания.

Печёночная форма также часто обладает ранней манифестацией, однако, имеет менее тяжёлое течении и летальность. Характеризуется приступами гипокетотической гипогликемии.

Миопатическая форма наблюдаются у детей школьного возраста и взрослых. Её основные проявления: непереносимость физической нагрузки (миастения), боли в мышцах (миалгии, рабдомиалгии), рабдомиолиз, изменение цвета мочи вследствие миоглобинурии[12].

Дикарбоновая ацидурия

Дикарбоновая ацидурия заболевание, связанное с повышенной экскрецией С6—С10-дикарбоновых кислот и возникающей на этом фоне гипогликемии, однако, не связанная с повышением содержания кетоновых тел. Причиной данного заболевания является MCAD. При этом нарушается β-окисление и усиливается ω-окисление длинноцепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот, выводимых из организма[7].

Синдром Цельвегера

Синдром Цельвегера или цереброгепаторенальный синдром, редкое наследственное заболевание описано американским педиатором Хансом Цельвегером (H.U. Zellweger), которое проявляется в отсутствии пероксисом во всех тканях организма. Вследствие этого в организме, особенно в мозгу накапливаются полиеновые кислоты (С2638), представляющие собой длиноцепочечные жирные кислоты[7] Примерная заболеваемость нарушениями биогенеза пероксисом спектра синдрома Цельвегера составляет 1:50 000 новорождённых в США и 1:500 000 новорождённых в Японии. Для синдрома характерны: пренатальная задержка роста; мышечная гипотония; затруднение сосания; арефлексия; долихоцефалия; высокий лоб; круглое плоское лицо; одутловатые веки; гипертелоризм; монголоидный разрез глаз; катаракта; пигментная ретинопатия или дисплазия зрительного нерва; колобома радужки; низко расположенные ушные раковины; микрогнатия; расщелина неба; латеральное или медиальное искривление пальцев; поражение печени (гепатомегалия (увеличение объёма печени), дисгинезия внутрипеченочных протоков, цирроз печени); поликистоз почек; нередко — тяжёлые, несовместимые с жизнью аномалии лёгких и пороки сердца; задержка психомоторного развития; судороги; стойкая желтуха. При патоморфологическом исследовании выявляют задержку миелинизации нейронов; накопление липидов в астроцитах; в печени, почках и мозге уменьшено содержание плазмогенов; в клетках печени и других тканях организма снижено количество пероксисом, большинство пероксисомных ферментов неактивны. В крови повышена активность трансаминаз и отмечается стойкая гипербилирубинемия[13]. Нарушения биогенеза пероксисом обусловлены мутациями в одном из 12 генов PEX[14], кодирующих пероксины. Мутации в этих генах ведут к аномалиям биогенеза пероксисом. Все варианты синдрома Цельвегера наследуются по аутосомно-рецессивному типу[15].

Ямайская рвотная болезнь

Молекула гипоглицина

Специфическая болезнь, характеризуется сильнейшей интоксикацией, сопровождающаяся рвотой, гиповолемическим шоком, конвульсиями, гипогликемией, в тяжёлой форме может наступить кома и смертельный исход. Вызывается при употреблении незрелых либо сырых плодов Аки или блигией вкусной (Blighia sapida), в состав которых входит производное α-аминопропановой кислоты, токсин — гипоглицин. В результате метаболизма гипоглицин инактивирует ацил-CoA-дегидрогеназу, впоследствии чего ингибируется процесс β-окисления[7]. В присутствии гипоглицина происходит накопление главным образом бутирил-CoA, который гидролизуется до свободной масляной кислоты (бутирата). Масляная кислота в избытке попадает в кровь, косвенно вызывая гипогликемию[8].

Примечания

  1. 1 2 3 4 5 6 7 8 Строев Е. А. Биологическая химия: Учебник для фармац. ин-тов и фармац. фак. мед. ин-тов. — М.: Высшая школа, 1986. — 479 с.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Е.С. Северин. Биохимия. — М.: ГЭОТАР-МЕД, 2004. — 779 с. — ISBN 5-9231-0254-4.
  3. 1 2 3 4 5 6 7 8 9 Березов Т. Т., Коровкин Б. Ф. Биологическая химия. — М.: Медицина, 1998. — 704 с. — ISBN 5-225-02709-1.
  4. 1 2 Metzler, 2003, p. 943.
  5. Knoop, Franz (1904). "Der Abbau aromatischer Fettsäuren im Tierkörper". Beitr Chem Physiol Pathol. 6: 150—162. {{cite journal}}: |access-date= требует |url= (справка)
  6. Houten S. M., Wanders R. J. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. (англ.) // Journal of inherited metabolic disease. — 2010. — Vol. 33, no. 5. — P. 469—477. — doi:10.1007/s10545-010-9061-2. — PMID 20195903. [исправить]
  7. 1 2 3 4 5 6 7 Р.Марри, Д.Греннер, П. Мейес, В. Родуэлл. Биохимия человека. — М.: Мир, 1993. — Т. I. — 384 с. — ISBN 5-03-001774-7.
  8. 1 2 3 Нельсон Д., Кокс М. Основы биохимии Ленинджера. — М.: БИНОМ, 2011. — Т. II.
  9. Кольман. Я., Рём К. Г. Наглядная биохимия. — М.: Мир, 2011. — 469 с. — ISBN 5-03-003304-1.
  10. Биологическая химия с упражнениями и задачами / Под ред. С.Е. Северина. — М.: ГЭОТАР-Медиа, 2011. — 624 p. — ISBN 9785970417553.
  11. Handig I et al: Inheritance of the S113L mutation within an inbred family with carnitine palmitoyltransferase enzyme deficiency. Hum. Genet. 97: 291-293, 1996. PMID 8786066.
  12. Федеральные клинические рекомендации (протоколы) по оказанию медицинской помощи больным с дефицитом ацил-КоА дегидрогеназы жирных кислот с очень длинной углеродной цепью. — Москва: РОССИЙСКОЕ ОБЩЕСТВО МЕДИЦИНСКИХ ГЕНЕТИКОВ, 2013. — 18 с.
  13. P. Bowen, C. S. N. Lee, H. U. Zellweger, R. Lindenburg. A familial syndrome of multiple congenital defects. Bulletin of the Johns Hopkins Hospital, 1964; 114: 402.
  14. OMIM 214100
  15. MedicalPlanet

Литература

  • Д.Мецлер. Биохимия. — М.: Мир, 1980. — 609 p.
  • Нельсон Д., Кокс М. Основы биохимии Ленинджера. — М.: Бином, 2014. — 636 p. — 1700 экз. — ISBN 978-5-94774-366-1.

См. также