Кинетическая энергия: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
м стилевая правка
Нет описания правки
Строка 5: Строка 5:
где индекс <math>\ i</math> нумерует материальные точки. Часто выделяют кинетическую энергию [[поступательное движение|поступательного]] и [[вращательное движение|вращательного]] движения<ref name="ФЭ">{{Книга:Физическая энциклопедия|2|автор=[[Тарг, Семён Михайлович|Тарг С. М.]]|статья=Кинетическая энергия|ссылка= http://www.femto.com.ua/articles/part_1/1614.html|страницы=360}}</ref>. Более строго, кинетическая энергия есть разность между полной энергией системы и её [[Энергия покоя|энергией покоя]]; таким образом, кинетическая энергия — часть [[Полная энергия|полной энергии]], обусловленная [[Механическое движение|движением]]<ref>{{книга|автор=Батыгин В. В., Топтыгин И. Н.|часть=3.2. Кинематика релятивистских частиц|заглавие=Современная электродинамика, часть 1. Микроскопическая теория|ссылка=|место=Москва-Ижевск|издательство=Институт компьютерных исследований|год=2002|страницы=238|страниц=736|isbn=5-93972-164-8|тираж=1000}}</ref>. Когда [[физическое тело|тело]] не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: <math> T </math>, <math> E_{kin} </math>, <math> K </math> и другие. В системе [[СИ]] она измеряется в [[Джоуль|джоулях]] (Дж).
где индекс <math>\ i</math> нумерует материальные точки. Часто выделяют кинетическую энергию [[поступательное движение|поступательного]] и [[вращательное движение|вращательного]] движения<ref name="ФЭ">{{Книга:Физическая энциклопедия|2|автор=[[Тарг, Семён Михайлович|Тарг С. М.]]|статья=Кинетическая энергия|ссылка= http://www.femto.com.ua/articles/part_1/1614.html|страницы=360}}</ref>. Более строго, кинетическая энергия есть разность между полной энергией системы и её [[Энергия покоя|энергией покоя]]; таким образом, кинетическая энергия — часть [[Полная энергия|полной энергии]], обусловленная [[Механическое движение|движением]]<ref>{{книга|автор=Батыгин В. В., Топтыгин И. Н.|часть=3.2. Кинематика релятивистских частиц|заглавие=Современная электродинамика, часть 1. Микроскопическая теория|ссылка=|место=Москва-Ижевск|издательство=Институт компьютерных исследований|год=2002|страницы=238|страниц=736|isbn=5-93972-164-8|тираж=1000}}</ref>. Когда [[физическое тело|тело]] не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: <math> T </math>, <math> E_{kin} </math>, <math> K </math> и другие. В системе [[СИ]] она измеряется в [[Джоуль|джоулях]] (Дж).


Упрощённо, кинетическая энергия — это работа, которую необходимо совершить, чтобы тело массой <math>m</math> разогнать из состояния покоя до скорости <math>v</math>. Либо, наоборот, это работа, требующаяся, чтобы тело массой <math>m</math>, обладающее начальной скоростью <math>v</math>, остановить.
Упрощённо, кинетическая энергия — это работа, которую необходимо совершить, чтобы тело массой <math>m</math> разогнать из состояния покоя до скорости <math>v</math>. Либо, наоборот, это работа, требующаяся, чтобы тело массой <math>m</math>, обладающее начальной скоростью <math>v</math>, остановить.


== История и этимология понятия ==
== История и этимология понятия ==
Прилагательное «кинетический» происходит от греческого слова κίνησις (kinesis, «движение»). [[Дихотомия]] между кинетической энергией и [[Потенциальная энергия|потенциальной энергией]] восходит к [[Аристотель|аристотелевским]] концепциям действительности и потенциальности.
Прилагательное «кинетический» происходит от греческого слова κίνησις (kinesis, «движение»). [[Дихотомия]] между кинетической энергией и [[Потенциальная энергия|потенциальной энергией]] восходит к [[Аристотель|аристотелевским]] концепциям {{iw|Потенциальность и актуальность|потенциальности и актуальности||Potentiality and actuality}}<ref>{{cite book |title=Logic in Reality |edition=illustrated |first1=Joseph |last1=Brenner |publisher=Springer Science & Business Media |year=2008 |isbn=978-1-4020-8375-4 |page=93 |url=https://books.google.com/books?id=Jnj5E6C9UwsC |access-date=2016-02-01 |archive-date=2020-01-25 |archive-url=https://web.archive.org/web/20200125133150/https://books.google.com/books?id=Jnj5E6C9UwsC |url-status=live }} [https://books.google.com/books?id=Jnj5E6C9UwsC&pg=PA93 Extract of page 93] {{Webarchive|url=https://web.archive.org/web/20200804010734/https://books.google.com/books?id=Jnj5E6C9UwsC&pg=PA93 |date=2020-08-04 }}</ref> .


Принцип [[Классическая механика|классической механики]], согласно которому ''E ∝ mv<sup>2</sup>'', был впервые разработан [[Лейбниц, Готфрид Вильгельм|Готфридом Лейбницем]] и [[Бернулли, Иоганн|Иоганном Бернулли]], описавшими кинетическую энергию как [[Живая сила (физика)|''живую силу'']] ({{lang-la|vis viva}})<ref>{{книга|автор=[[Мах, Эрнст|Мах Э.]]&nbsp;|заглавие=Механика. Историко-критический очерк её развития|год=2000|место=Ижевск|издательство=«РХД»|страницы=252|страниц=456|isbn=5-89806-023-5}}</ref>. [[Гравезанд, Вильгельм Якоб|Вильгельм Гравезанд]] из [[Нидерланды|Нидерландов]] предоставил экспериментальные доказательства этой связи. Сбрасывая грузы с разной высоты на глиняный блок, он определил, что глубина их проникновения пропорциональна квадрату скорости удара. [[Эмили дю Шатле]] осознала значение данного эксперимента и опубликовала объяснение<ref>{{Книга|ссылка=https://www.worldcat.org/oclc/170956072|автор=Judith P. Zinsser|заглавие=Emilie Du Châtelet : daring genius of the Enlightenment|год=2007|место=New York, N.Y.|издательство=Penguin Books|страниц=viii, 376 pages, 16 unnumbered pages of plates|isbn=0-14-311268-6, 978-0-14-311268-6}}</ref>.
Принцип [[Классическая механика|классической механики]], согласно которому ''E ∝ mv<sup>2</sup>'', был впервые разработан [[Лейбниц, Готфрид Вильгельм|Готфридом Лейбницем]] и [[Бернулли, Иоганн|Иоганном Бернулли]], описавшими кинетическую энергию как ''[[Живая сила (физика)|живую силу]]'' ({{lang-la|vis viva}})<ref>{{книга|автор=[[Мах, Эрнст|Мах Э.]]&nbsp;|заглавие=Механика. Историко-критический очерк её развития|год=2000|место=Ижевск|издательство=«РХД»|страницы=252|страниц=456|isbn=5-89806-023-5}}</ref>. [[Гравезанд, Вильгельм Якоб|Вильгельм Гравезанд]] из [[Нидерланды|Нидерландов]] предоставил экспериментальные доказательства этой связи. Сбрасывая грузы с разной высоты на глиняный блок, он определил, что глубина их проникновения пропорциональна квадрату скорости удара. [[Эмили дю Шатле]] осознала значение данного эксперимента и опубликовала объяснение<ref>{{Книга|ссылка=https://www.worldcat.org/oclc/170956072|автор=Judith P. Zinsser|заглавие=Emilie Du Châtelet : daring genius of the Enlightenment|год=2007|место=New York, N.Y.|издательство=Penguin Books|страниц=viii, 376 pages, 16 unnumbered pages of plates|isbn=0-14-311268-6, 978-0-14-311268-6}}</ref>.


Понятия «кинетическая энергия» и «[[механическая работа|работа]]» в их нынешнем научном значении восходят к середине XIX века. В 1829 году [[Кориолис, Гаспар-Гюстав|Гаспар-Гюстав Кориолис]] опубликовал статью ''Du Calcul de l'Effet des Machines'', в которой излагалась математика того, что по сути является кинетической энергией. Создание и введение в оборот самого термина «кинетическая энергия» приписывают [[Томсон, Уильям (лорд Кельвин)|Уильяму Томсону]] (лорду Кельвину) c 1849–1851 гг.<ref>{{Книга|ссылка=https://www.worldcat.org/oclc/18413875|автор=Crosbie Smith|заглавие=Energy and empire : a biographical study of Lord Kelvin|год=1989|место=Cambridge [Cambridgeshire]|издательство=Cambridge University Press|страниц=xxvi, 866 pages|isbn=0-521-26173-2, 978-0-521-26173-9}}</ref><ref>{{Книга|ссылка=https://www.worldcat.org/oclc/31731572|автор=John Theodore Merz|заглавие=A history of European thought in the nineteenth century|год=1976|место=Gloucester, Mass.|издательство=Peter Smith|страниц=4 volumes|isbn=0-8446-2579-5, 978-0-8446-2579-9}}</ref>. [[Ренкин, Уильям Джон|Ренкин]], который ввел термин «потенциальная энергия» в 1853 году<ref>{{Статья|ссылка=http://dx.doi.org/10.1080/14786445308647205|автор=William John Macquorn Rankine|заглавие=XVIII. On the general law of the transformation of energy|год=1853-02|издание=The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science|том=5|выпуск=30|страницы=106–117|issn=1941-5982, 1941-5990|doi=10.1080/14786445308647205}}</ref>, позже цитировал У. Томсона и [[Тэйт, Питер Гатри|П. Тэйта]] с заменой слова «кинетическая» на «фактическая»<ref>{{Статья|ссылка=http://dx.doi.org/10.1080/14786446708639753|автор=W.J. Macquorn Rankine|заглавие=XIII. On the phrase “Potential energy,” and on the definitions of physical quantities|год=1867-02|издание=The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science|том=33|выпуск=221|страницы=88–92|issn=1941-5982, 1941-5990|doi=10.1080/14786446708639753}}</ref>.
Понятия «кинетическая энергия» и «[[механическая работа|работа]]» в их нынешнем научном значении восходят к середине XIX века. В 1829 году [[Кориолис, Гаспар-Гюстав|Гаспар-Гюстав Кориолис]] опубликовал статью ''Du Calcul de l’Effet des Machines'', в которой излагалась математика того, что по сути является кинетической энергией. Создание и введение в оборот самого термина «кинетическая энергия» приписывают [[Томсон, Уильям (лорд Кельвин)|Уильяму Томсону]] (лорду Кельвину) c 1849—1851 гг.<ref>{{Книга|ссылка=https://www.worldcat.org/oclc/18413875|автор=Crosbie Smith|заглавие=Energy and empire : a biographical study of Lord Kelvin|год=1989|место=Cambridge [Cambridgeshire]|издательство=Cambridge University Press|страниц=xxvi, 866 pages|isbn=0-521-26173-2, 978-0-521-26173-9}}</ref><ref>{{Книга|ссылка=https://www.worldcat.org/oclc/31731572|автор=John Theodore Merz|заглавие=A history of European thought in the nineteenth century|год=1976|место=Gloucester, Mass.|издательство=Peter Smith|страниц=4 volumes|isbn=0-8446-2579-5, 978-0-8446-2579-9}}</ref>. [[Ренкин, Уильям Джон|Ренкин]], который ввел термин «потенциальная энергия» в 1853 году<ref>{{Статья|ссылка=http://dx.doi.org/10.1080/14786445308647205|автор=William John Macquorn Rankine|заглавие=XVIII. On the general law of the transformation of energy|год=1853-02|издание=The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science|том=5|выпуск=30|страницы=106–117|issn=1941-5982, 1941-5990|doi=10.1080/14786445308647205}}</ref>, позже цитировал У. Томсона и [[Тэйт, Питер Гатри|П. Тэйта]] с заменой слова «кинетическая» на «фактическая»<ref>{{Статья|ссылка=http://dx.doi.org/10.1080/14786446708639753|автор=W.J. Macquorn Rankine|заглавие=XIII. On the phrase “Potential energy,” and on the definitions of physical quantities|год=1867-02|издание=The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science|том=33|выпуск=221|страницы=88–92|issn=1941-5982, 1941-5990|doi=10.1080/14786446708639753}}</ref>.


== Кинетическая энергия в классической механике ==
== Кинетическая энергия в классической механике ==
Строка 35: Строка 35:
где по повторяющемуся индексу <math>{\alpha} = x, y, z</math>, означающему соответствующую проекцию скорости, предполагается суммирование.
где по повторяющемуся индексу <math>{\alpha} = x, y, z</math>, означающему соответствующую проекцию скорости, предполагается суммирование.


Поскольку в [[Турбулентность|турбулентном]] потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с [[RANS|методом О. Рейнольдса]], получаются путём осреднения [[Уравнения Навье-Стокса|уравнений Навье-Стокса]]<ref name="Monin">''[[Монин, Андрей Сергеевич|Монин А. С.]], [[Яглом, Акива Моисеевич|Яглом А. М.]]'' Статистическая гидромеханика. Часть 1. — {{М.}}: Наука, 1965. — 639 с.</ref>. Если, в согласии с методом Рейнольдса, представить <math>\ \rho = \overline {\rho} + \rho' </math>, <math>v_{\alpha} = \overline {v_{\alpha}} + v'_{\alpha} </math>, где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:
Поскольку в [[Турбулентность|турбулентном]] потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с [[RANS|методом О. Рейнольдса]], получаются путём осреднения [[Уравнения Навье-Стокса|уравнений Навье-Стокса]]<ref name="Monin">''[[Монин, Андрей Сергеевич|Монин А. С.]], [[Яглом, Акива Моисеевич|Яглом А. М.]]'' Статистическая гидромеханика. Часть 1. — {{М.}}: Наука, 1965. — 639 с.</ref>. Если, в согласии с методом Рейнольдса, представить <math>\ \rho = \overline {\rho} + \rho' </math>, <math>v_{\alpha} = \overline {v_{\alpha}} + v'_{\alpha} </math>, где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:
: <math> \overline{w_T} = \frac{1}{2} \overline{\rho v_{\alpha} v_{\alpha}} = E_s + E_{st} + E_t, </math>
: <math> \overline{w_T} = \frac{1}{2} \overline{\rho v_{\alpha} v_{\alpha}} = E_s + E_{st} + E_t, </math>
где <math>E_s= \overline{\rho} \, \overline{v_{\alpha}} \, \overline{ v_{\alpha}}/2 </math> — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, <math>E_t= \overline{\rho}\,\overline{v'_{\alpha} \, v'_{\alpha}}/2 + \overline{\rho' v'_{\alpha} v'_{\alpha}}/2</math> — плотность кинетической энергии, связанной с неупорядоченным движением («''плотность кинетической энергии турбулентности''»<ref name="Monin"/>, часто называемой просто «''энергией турбулентности''»), а <math>E_{st}= S_{\alpha}\overline{v_{\alpha}} </math> — плотность кинетической энергии, связанная с турбулентным потоком вещества (<math>S_{\alpha} = \overline{\rho' v'_{\alpha}} </math> — плотность флуктуационного потока массы, или «''плотность турбулентного импульса''»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при [[Преобразования Галилея|преобразовании Галилея]]: кинетическая энергия упорядоченного движения <math>E_s</math> зависит от выбора системы координат, в то время как кинетическая энергия турбулентности <math>E_t</math> от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие [[Внутренняя энергия|внутренней энергии]].
где <math>E_s= \overline{\rho} \, \overline{v_{\alpha}} \, \overline{ v_{\alpha}}/2 </math> — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, <math>E_t= \overline{\rho}\,\overline{v'_{\alpha} \, v'_{\alpha}}/2 + \overline{\rho' v'_{\alpha} v'_{\alpha}}/2</math> — плотность кинетической энергии, связанной с неупорядоченным движением («''плотность кинетической энергии турбулентности''»<ref name="Monin"/>, часто называемой просто «''энергией турбулентности''»), а <math>E_{st}= S_{\alpha}\overline{v_{\alpha}} </math> — плотность кинетической энергии, связанная с турбулентным потоком вещества (<math>S_{\alpha} = \overline{\rho' v'_{\alpha}} </math> — плотность флуктуационного потока массы, или «''плотность турбулентного импульса''»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при [[Преобразования Галилея|преобразовании Галилея]]: кинетическая энергия упорядоченного движения <math>E_s</math> зависит от выбора системы координат, в то время как кинетическая энергия турбулентности <math>E_t</math> от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие [[Внутренняя энергия|внутренней энергии]].
Строка 44: Строка 44:
В квантовой механике кинетическая энергия представляет собой [[оператор (физика)|оператор]], записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором (<math>\hat{p}= -j\hbar\nabla </math>, <math> \ j </math> — [[мнимая единица]]):
В квантовой механике кинетическая энергия представляет собой [[оператор (физика)|оператор]], записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором (<math>\hat{p}= -j\hbar\nabla </math>, <math> \ j </math> — [[мнимая единица]]):
: <math>\hat{T}= \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m}\Delta</math>
: <math>\hat{T}= \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m}\Delta</math>
где <math>\hbar</math> — [[постоянная Дирака|редуцированная постоянная Планка]], <math>\nabla </math> — оператор [[набла]], <math>\Delta</math> — [[оператор Лапласа]]. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — [[уравнение Шрёдингера]]<ref>''[[Блохинцев, Дмитрий Иванович|Блохинцев Д. И.]]'' [http://eqworld.ipmnet.ru/ru/library/books/Blohincev1976ru.djvu Основы квантовой механики], 5-е изд. Наука, 1976. — 664 с., см. § 26.</ref>.
где <math>\hbar</math> — [[постоянная Дирака|редуцированная постоянная Планка]], <math>\nabla </math> — оператор [[набла]], <math>\Delta</math> — [[оператор Лапласа]]. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — [[уравнение Шрёдингера]]<ref>''[[Блохинцев, Дмитрий Иванович|Блохинцев Д. И.]]'' [http://eqworld.ipmnet.ru/ru/library/books/Blohincev1976ru.djvu Основы квантовой механики], 5-е изд. Наука, 1976. — 664 с., см. § 26.</ref>.


== Кинетическая энергия в [[Специальная теория относительности|релятивистской механике]] ==
== Кинетическая энергия в [[Специальная теория относительности|релятивистской механике]] ==
[[File:E Kin-ru.svg|thumb|350px|Зависимости от скорости кинетической энергии в классическом и релятивистском случаях для массы в 1 кг]]
[[Файл:E Kin-ru.svg|thumb|350px|Зависимости от скорости кинетической энергии в классическом и релятивистском случаях для массы в 1 кг]]
Если в задаче допускается движение со скоростями, близкими к [[скорость света|скорости света]], кинетическая энергия материальной точки определяется как:
Если в задаче допускается движение со скоростями, близкими к [[скорость света|скорости света]], кинетическая энергия материальной точки определяется как:


Строка 68: Строка 68:
* '''Инвариантность по отношению к повороту системы отсчёта.''' Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости{{sfn|Айзерман|с=49|1980}}.
* '''Инвариантность по отношению к повороту системы отсчёта.''' Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости{{sfn|Айзерман|с=49|1980}}.
* '''Неинвариантность по отношению к смене системы отсчёта в общем случае.''' Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
* '''Неинвариантность по отношению к смене системы отсчёта в общем случае.''' Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
* '''Сохранение.''' Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея{{sfn|Айзерман|с=49|1980}}. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии{{sfn|Айзерман|с=54|1980}}<ref>Сорокин В. С. [http://ufn.ru/ru/articles/1956/6/c/ «Закон сохранения движения и мера движения в физике»] // [[УФН]], 59, с. 325—362, (1956)</ref>.
* '''Сохранение.''' Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея{{sfn|Айзерман|с=49|1980}}. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии{{sfn|Айзерман|с=54|1980}}<ref>Сорокин В. С. [http://ufn.ru/ru/articles/1956/6/c/ «Закон сохранения движения и мера движения в физике»] // [[УФН]], 59, с. 325—362, (1956)</ref>.


== Физический смысл кинетической энергии ==
== Физический смысл кинетической энергии ==
Строка 104: Строка 104:
| ref = Айзерман
| ref = Айзерман
}}
}}
*[[Фриш, Сергей Эдуардович|''Фриш С. Э.'']] Курс общей физики. В 3-х тт. Т.1. Физические основы механики. Молекулярная физика. Колебания и волны. 13-е изд. — СПб<abbr>.</abbr>: Лань, 2010. — 480 с. — [[Служебная:Источники книг/978-5-8114-0663-0|ISBN 978-5-8114-0663-0]].
* ''[[Фриш, Сергей Эдуардович|Фриш С. Э.]]'' Курс общей физики. В 3-х тт. Т.1. Физические основы механики. Молекулярная физика. Колебания и волны. 13-е изд. — СПб<abbr>.</abbr>: Лань, 2010. — 480 с. — [[Служебная:Источники книг/978-5-8114-0663-0|ISBN 978-5-8114-0663-0]].
*''[[Сивухин, Дмитрий Васильевич|Сивухин Д. В.]]''  Общий курс физики. Т. 1. Механика. 5-е изд. — <abbr>М.</abbr>: [[Физматлит]], 2006. — 560 с. — ISBN 5-9221-0715-1.
* ''[[Сивухин, Дмитрий Васильевич|Сивухин Д. В.]]'' Общий курс физики. Т. 1. Механика. 5-е изд. — <abbr>М.</abbr>: [[Физматлит]], 2006. — 560 с. — ISBN 5-9221-0715-1.


{{rq|topic=physics|sources|refless}}
{{rq|topic=physics|sources|refless}}
{{ВС}}


[[Категория:Динамика]]
[[Категория:Динамика]]

Версия от 13:00, 29 ноября 2021

Виды энергии:
Механическая  Потенциальная
 Кинетическая
Внутренняя
Электромагнитная  Электрическая
 Магнитная
Химическая
Ядерная
Гравитационная
Вакуума
Гипотетические:
Тёмная
См. также: Закон сохранения энергии

Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек[1]. Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[2]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как

,

где индекс нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[3]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[4]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: , , и другие. В системе СИ она измеряется в джоулях (Дж).

Упрощённо, кинетическая энергия — это работа, которую необходимо совершить, чтобы тело массой разогнать из состояния покоя до скорости . Либо, наоборот, это работа, требующаяся, чтобы тело массой , обладающее начальной скоростью , остановить.

История и этимология понятия

Прилагательное «кинетический» происходит от греческого слова κίνησις (kinesis, «движение»). Дихотомия между кинетической энергией и потенциальной энергией восходит к аристотелевским концепциям потенциальности и актуальности[англ.][5] .

Принцип классической механики, согласно которому E ∝ mv2, был впервые разработан Готфридом Лейбницем и Иоганном Бернулли, описавшими кинетическую энергию как живую силу (лат. vis viva)[6]. Вильгельм Гравезанд из Нидерландов предоставил экспериментальные доказательства этой связи. Сбрасывая грузы с разной высоты на глиняный блок, он определил, что глубина их проникновения пропорциональна квадрату скорости удара. Эмили дю Шатле осознала значение данного эксперимента и опубликовала объяснение[7].

Понятия «кинетическая энергия» и «работа» в их нынешнем научном значении восходят к середине XIX века. В 1829 году Гаспар-Гюстав Кориолис опубликовал статью Du Calcul de l’Effet des Machines, в которой излагалась математика того, что по сути является кинетической энергией. Создание и введение в оборот самого термина «кинетическая энергия» приписывают Уильяму Томсону (лорду Кельвину) c 1849—1851 гг.[8][9]. Ренкин, который ввел термин «потенциальная энергия» в 1853 году[10], позже цитировал У. Томсона и П. Тэйта с заменой слова «кинетическая» на «фактическая»[11].

Кинетическая энергия в классической механике

Случай одной материальной точки

По определению, кинетической энергией материальной точки массой называется величина

,

при этом предполагается, что скорость точки всегда значительно меньше скорости света. С использованием понятия импульса () данное выражение примет вид .

Если  — равнодействующая всех сил, приложенных к точке, выражение второго закона Ньютона запишется как . Скалярно умножив его на перемещение материальной точки и учитывая, что , причём , получим .

Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина остаётся постоянной, то есть кинетическая энергия является интегралом движения.

Случай абсолютно твёрдого тела

При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:

Здесь  — масса тела,  — скорость центра масс, и  — угловая скорость тела и его момент инерции относительно мгновенной оси, проходящей через центр масс[12].

Кинетическая энергия в гидродинамике

В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа . Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью , то есть плотность кинетической энергии (Дж/м3), запишется:

где по повторяющемуся индексу , означающему соответствующую проекцию скорости, предполагается суммирование.

Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[13]. Если, в согласии с методом Рейнольдса, представить , , где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:

где  — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа,  — плотность кинетической энергии, связанной с неупорядоченным движением («плотность кинетической энергии турбулентности»[13], часто называемой просто «энергией турбулентности»), а  — плотность кинетической энергии, связанная с турбулентным потоком вещества ( — плотность флуктуационного потока массы, или «плотность турбулентного импульса»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея: кинетическая энергия упорядоченного движения зависит от выбора системы координат, в то время как кинетическая энергия турбулентности от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии.

Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.

Кинетическая энергия в квантовой механике

В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором (,  — мнимая единица):

где  — редуцированная постоянная Планка,  — оператор набла,  — оператор Лапласа. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера[14].

Кинетическая энергия в релятивистской механике

Зависимости от скорости кинетической энергии в классическом и релятивистском случаях для массы в 1 кг

Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как:

где  — масса покоя,
 — скорость движения в выбранной инерциальной системе отсчёта,
 — скорость света в вакууме ( — энергия покоя).

Или выражение для кинетической энергии в виде ряда Маклорена:

При скоростях много меньших скорости света () пренебрегаем членами разложения с высшими степенями и выражение для переходит в классическую формулу .

Как и в классическом случае, имеет место соотношение , получаемое посредством умножения на выражения второго закона Ньютона (в виде ).

Свойства кинетической энергии

  • Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
  • Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
  • Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
  • Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[15][16].

Физический смысл кинетической энергии

Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[2]:

Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения между состояниями 1 и 2).

Соотношение кинетической и внутренней энергии

Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.

См. также

Примечания

  1. 1 2 3 4 Айзерман, 1980, с. 49.
  2. 1 2 Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.
  3. Тарг С. М. Кинетическая энергия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  4. Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
  5. Brenner, Joseph. Logic in Reality. — illustrated. — Springer Science & Business Media, 2008. — P. 93. — ISBN 978-1-4020-8375-4. Extract of page 93 Архивировано 4 августа 2020 года.
  6. Мах Э.  Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
  7. Judith P. Zinsser. Emilie Du Châtelet : daring genius of the Enlightenment. — New York, N.Y.: Penguin Books, 2007. — viii, 376 pages, 16 unnumbered pages of plates с. — ISBN 0-14-311268-6, 978-0-14-311268-6.
  8. Crosbie Smith. Energy and empire : a biographical study of Lord Kelvin. — Cambridge [Cambridgeshire]: Cambridge University Press, 1989. — xxvi, 866 pages с. — ISBN 0-521-26173-2, 978-0-521-26173-9.
  9. John Theodore Merz. A history of European thought in the nineteenth century. — Gloucester, Mass.: Peter Smith, 1976. — 4 volumes с. — ISBN 0-8446-2579-5, 978-0-8446-2579-9.
  10. William John Macquorn Rankine. XVIII. On the general law of the transformation of energy // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. — 1853-02. — Т. 5, вып. 30. — С. 106–117. — ISSN 1941-5990 1941-5982, 1941-5990. — doi:10.1080/14786445308647205.
  11. W.J. Macquorn Rankine. XIII. On the phrase “Potential energy,” and on the definitions of physical quantities // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. — 1867-02. — Т. 33, вып. 221. — С. 88–92. — ISSN 1941-5990 1941-5982, 1941-5990. — doi:10.1080/14786446708639753.
  12. Голубева О. В. Теоретическая механика. — М.: «Высшая школа», 1968. — С. 243—245.
  13. 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
  14. Блохинцев Д. И. Основы квантовой механики, 5-е изд. Наука, 1976. — 664 с., см. § 26.
  15. Айзерман, 1980, с. 54.
  16. Сорокин В. С. «Закон сохранения движения и мера движения в физике» // УФН, 59, с. 325—362, (1956)

Литература