Электростатический потенциал

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 Просмотр этого шаблона  Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм
См. также: Портал:Физика

Электростатический потенциа́л (см. также кулоновский потенциал) — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля. Единицей измерения потенциала в Международной системе единиц (СИ) является вольт (русское обозначение: В; международное: V), 1 В = 1 Дж/Кл (подробнее о единицах измерения — см. ниже).

Электростатический потенциал — специальный термин для возможной замены общего термина электродинамики скалярный потенциал в частном случае электростатики (исторически электростатический потенциал появился первым, а скалярный потенциал электродинамики — его обобщение). Употребление термина электростатический потенциал определяет собой наличие именно электростатического контекста. Если такой контекст уже очевиден, часто говорят просто о потенциале без уточняющих прилагательных.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

\varphi = \frac{W_p}{q_p}

Напряжённость электростатического поля \mathbf E и потенциал \varphi связаны соотношением[1]

\int\limits_A^B  \mathbf E\cdot\mathbf{dl} = \varphi(A) - \varphi(B)

или обратно[2]:

\mathbf E = - \nabla \varphi.

Здесь \nabla — оператор набла, то есть в правой части равенства стоит минус градиент потенциала — вектор с компонентами, равными частным производным от потенциала по соответствующим (прямоугольным) декартовым координатам, взятый с противоположным знаком.

Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля \mathbf\nabla\cdot \mathbf E = {\rho \over \varepsilon_0}, легко увидеть, что электростатический потенциал удовлетворяет уравнению Пуассона в вакууме. В единицах системы СИ:

{\nabla}^2 \varphi = - {\rho \over \varepsilon_0}

где  \varphi \!  — электростатический потенциал (в вольтах),  \rho \! — объёмная плотность зарядакулонах на кубический метр), а  \varepsilon_0 \! — электрическая постояннаяфарадах на метр).

Неоднозначность определения потенциала[править | править вики-текст]

Поскольку потенциал (как и потенциальная энергия) может быть определён с точностью до произвольной постоянной (и все величины, которые можно измерить, а именно напряженности поля, силы, работы — не изменятся, если мы выберем эту постоянную так или по-другому), непосредственный физический смысл (по крайней мере, пока речь не идет о квантовых эффектах) имеет не сам потенциал, а разность потенциалов, которая определяется как:

\varphi_1 - \varphi_2 = \frac{A_{f}^{q^{*}1 \to 2}}{q^{*}}

где: \varphi_1 — потенциал в точке 1, \varphi_2 — потенциал в точке 2, A_{f}^{q^{*} 1 \to 2} — работа, совершаемая полем при переносе пробного заряда q^{*} из точки 1 в точку 2. При этом считается, что все остальные заряды при такой операции «заморожены» — то есть неподвижны во время этого перемещения (имеется в виду вообще говоря скорее воображаемое, а не реальное перемещение, хотя в случае, если остальные заряды действительно закреплены — или пробный заряд исчезающе мал по величине — чтобы не вносить заметного возмущения в положнения других — и переносится достаточно быстро, чтобы остальные заряды не успели заметно переместиться за это время, формула оказывается верной и для вполне реальной работы при реальном перемещении).

Впрочем, иногда для снятия неоднозначности используют какие-нибудь «естественные» условия. Например, часто потенциал определяют таким образом, чтобы он был равен нулю на бесконечности для любого точечного заряда — и тогда для любой конечной системы зарядов выполнится на бесконечности это же условие, а над произволом выбора константы можно не задумываться (конечно, можно было бы выбрать вместо нуля любое другое число, но ноль — «проще»).

Единицы измерения[править | править вики-текст]

В СИ за единицу разности потенциалов принимают вольт (В). Разность потенциалов между двумя точками поля равна одному вольту, если для перемещения между ними заряда в один кулон нужно совершить работу в один джоуль: 1В = 1 Дж/Кл (L²MT−3I−1). В СГС единица измерения потенциала не получила специального названия. Разность потенциалов между двумя точками равна одной единице потенциала СГСЭ, если для перемещения между ними заряда величиной одна единица заряда СГСЭ нужно совершить работу в один эрг. Приближенное соответствие между величинами: 1 В = 1/300 ед. потенциала СГСЭ

Использование термина[править | править вики-текст]

Широко используемые термины напряжение и электрический потенциал имеют несколько иной смысл, хотя нередко используются неточно как синонимы электростатического потенциала. Напряжением называют разность потенциалов.

Кулоновский потенциал[править | править вики-текст]

Иногда термин кулоновский потенциал используется просто для обозначения электростатического потенциала как полный синоним. Однако можно сказать, что в целом эти термины несколько различаются по оттенку и преимущественной области применения.

Чаще всего под кулоновским потенциалом имеют в виду электростатический потенциал одного точечного заряда (или нескольких точечных зарядов, полученный сложением кулоновского потенциала каждого из них). Зачастую даже в случае, когда имеется в виду потенциал, созданный непрерывно распределенными зарядами, если его называют кулоновским, это может подразумевать, что он выражен (или может быть выражен) всё же в виде суммы (интеграла) пусть и бесконечного числа элементов, на которые разбит заряженный объем, но всё же потенциал каждого рассчитан как потенциал точечного заряда. Однако, поскольку электростатический потенциал в принципе может быть выражен таким образом практически всегда (подробнее см. чуть ниже), то разграничение терминов всё же достаточно размывается.

Также под кулоновским могут понимать потенциал любой природы (то есть не обязательно электрический), который при точечном или сферически симметричном источнике имеет зависимость от расстояния  \frac1r (например, гравитационный потенциал в теории тяготения Ньютона, хотя последний чаще всё же называют ньютоновским, так как он был изучен в целом раньше), особенно если надо как-то обозначить весь этот класс потенциалов в отличие от потенциалов с другими зависимостями от расстояния.

Формула электростатического потенциала (кулоновского потенциала) точечного заряда в вакууме:

\varphi = k \frac{q}{r},

где k обозначен коэффициент, зависящий от системы единиц измерения — например, в СИ

 k = \frac1{4\pi\varepsilon_0} = 9·109 В·м/Кл,  q \!  — величина заряда,  r \!  — расстояние от заряда-источника до точки, для которой рассчитывается потенциал.

  • Можно показать, что эта формула верна не только для точечных зарядов, но и для любого сферически симметричного заряда конечного размера, например, равномерно заряженного шара, правда, только в свободном от заряда пространстве — то есть, например, над поверхностью шара, а не внутри его.
  • Кулоновский потенциал в приведенном выше виде используется в формуле кулоновской потенциальной энергии (потенциальной энергии взаимодействия системы электростатически взаимодействующих зарядов):
     W = \sum_{i<j} k\frac{q_i q_j}{r_{ij}}
= \frac{1}{2}\sum_{i\neq j} k\frac{q_i q_j}{r_{ij}}

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Это соотношение очевидным образом получается из выражения для работы \int \mathbf F\cdot\mathbf{dl}, где \mathbf F = q \mathbf E — сила, действующая на заряд q со стороны электрического поля напряжённостью E. Это выражение для работы, в сущности, и есть физический смысл формулы в основном тексте.
  2. В компонентах (в прямоугольных декартовых координатах) это равенство расписывается как
    E_x = - \frac{\partial\varphi}{\partial x},
    E_y = - \frac{\partial\varphi}{\partial y},
    E_z = - \frac{\partial\varphi}{\partial z}.