Неевклидова геометрия

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Неевклидова геометрия — в буквальном понимании — любая геометрическая система, которая отличается от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим системам: геометрии Лобачевского и сферической геометрии (или схожей с ней геометрии Римана).

Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — совпадающим по локальным свойствам сферической или геометрии Римана, отрицательная — геометрии Лобачевского.

Метрика для плоскости[править | править код]

Вид метрики для однородных планиметрий зависит от выбранной системы (криволинейных) координат; далее приводятся формулы для случая полугеодезических координат:

История понятия[править | править код]

См. также[править | править код]

Литература[править | править код]