Цепь Маркова

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Пример цепи с двумя состояниями

Це́пь Ма́ркова — последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова (старшего).

Цепь Маркова с дискретным временем[править | править вики-текст]

Определение[править | править вики-текст]

Последовательность дискретных случайных величин называется простой цепью Маркова (с дискретным временем), если

.

Таким образом, в простейшем случае условное распределение последующего состояния цепи Маркова зависит только от текущего состояния и не зависит от всех предыдущих состояний (в отличие от цепей Маркова высших порядков).

Область значений случайных величин называется простра́нством состоя́ний цепи, а номер  — номером шага.

Переходная матрица и однородные цепи[править | править вики-текст]

Матрица , где

называется ма́трицей перехо́дных вероя́тностей на -м шаге, а вектор , где

нача́льным распределе́нием цепи Маркова.

Очевидно, матрица переходных вероятностей является стохастической, то есть

.

Цепь Маркова называется одноро́дной, если матрица переходных вероятностей не зависит от номера шага, то есть

.

В противном случае цепь Маркова называется неоднородной. В дальнейшем будем предполагать, что имеем дело с однородными цепями Маркова.

Конечномерные распределения и матрица перехода за n шагов[править | править вики-текст]

Из свойств условной вероятности и определения однородной цепи Маркова получаем:

,

откуда вытекает специальный случай уравнения Колмогорова — Чепмена:

,

то есть матрица переходных вероятностей за шагов однородной цепи Маркова есть -я степень матрицы переходных вероятностей за 1 шаг. Наконец,

.

Классификация состояний цепи Маркова[править | править вики-текст]

Примеры[править | править вики-текст]

Цепь Маркова с непрерывным временем[править | править вики-текст]

Определение[править | править вики-текст]

Семейство дискретных случайных величин называется цепью Маркова (с непрерывным временем), если

.

Цепь Маркова с непрерывным временем называется однородной, если

.

Матрица переходных функций и уравнение Колмогорова — Чепмена[править | править вики-текст]

Аналогично случаю дискретного времени, конечномерные распределения однородной цепи Маркова с непрерывным временем полностью определены начальным распределением

и ма́трицей перехо́дных фу́нкций (переходных вероятностей)

.

Матрица переходных вероятностей удовлетворяет уравнению Колмогорова — Чепмена: или

Матрица интенсивностей и дифференциальные уравнения Колмогорова[править | править вики-текст]

По определению, матрица интенсивностей или, что эквивалентно,

.

Из уравнения Колмогорова — Чепмена следуют два уравнения:

Для обоих уравнений начальным условием выбирается . Соответствующее решение

Свойства матриц P и Q[править | править вики-текст]

Для любого матрица обладает следующими свойствами:

  1. Матричные элементы неотрицательны: (неотрицательность вероятностей).
  2. Сумма элементов в каждой строке равна 1: (полная вероятность), то есть матрица является стохастической справа (или по строкам).
  3. Все собственные числа матрицы не превосходят 1 по абсолютной величине: . Если , то .
  4. Собственному числу матрицы соответствует, как минимум, один неотрицательный левый собственный вектор-строка (равновесие): .
  5. Для собственного числа матрицы все корневые векторы являются собственными, то есть соответствующие жордановы клетки тривиальны.

Матрица обладает следующими свойствами:

  1. Внедиагональные матричные элементы неотрицательны: .
  2. Диагональные матричные элементы неположительны: .
  3. Сумма элементов в каждой строке равна 0:
  4. Действительная часть всех собственных чисел матрицы неположительна: . Если , то
  5. Собственному числу матрицы соответствует, как минимум, один неотрицательный левый собственный вектор-строка (равновесие):
  6. Для собственного числа матрицы все корневые векторы являются собственными, то есть соответствующие жордановы клетки тривиальны.

Граф переходов, связность и эргодические цепи Маркова[править | править вики-текст]

Для цепи Маркова с непрерывным временем строится ориентированный граф переходов (кратко — граф переходов) по следующим правилам:

  • Множество вершин графа совпадает со множеством состояний цепи.
  • Вершины соединяются ориентированным ребром , если (то есть интенсивность потока из -го состояния в -е положительна.

Топологические свойства графа переходов связаны со спектральными свойствами матрицы . В частности, для конечных цепей Маркова верны следующие теоремы:

  • Следующие три свойства А, Б, В конечной цепи Маркова эквивалентны (обладающие ими цепи иногда называют слабо эргодическими):
А. Для любых двух различных вершин графа переходов найдется такая вершина графа («общий сток»), что существуют ориентированные пути от вершины к вершине и от вершины к вершине . Замечание: возможен случай или ; в этом случае тривиальный (пустой) путь от к или от к также считается ориентированным путём.
Б. Нулевое собственное число матрицы невырождено.
В. При матрица стремится к матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
  • Следующие пять свойств А, Б, В, Г, Д конечной цепи Маркова эквивалентны (обладающие ими цепи называют эргодическими):
А. Граф переходов цепи ориентированно связен.
Б. Нулевое собственное число матрицы невырождено и ему соответствует строго положительный левый собственный вектор (равновесное распределение).
В. Для некоторого матрица строго положительна (то есть для всех ).
Г. Для всех матрица строго положительна.
Д. При матрица стремится к строго положительной матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).

Примеры[править | править вики-текст]

Рис. Примеры графов переходов для цепей Маркова: a) цепь не является слабо эргодической (не существует общего стока для состояний ); b) слабо эргодическая, но не эргодическая цепь (граф переходов не является ориентированно связным) c) эргодическая цепь (граф переходов ориентированно связен).

Рассмотрим цепи Маркова с тремя состояниями и с непрерывным временем, соответствующие графам переходов, представленным на рис. В случае (a) отличны от нуля только следующие недиагональные элементы матрицы интенсивностей — , в случае (b) отличны от нуля только , а в случае (c) — . Остальные элементы определяются свойствами матрицы (сумма элементов в каждой строке равна 0). В результате для графов (a), (b), (c) матрицы интенсивностей имеют вид:

Основное кинетическое уравнение[править | править вики-текст]

Основное кинетическое уравнение описывает эволюцию распределения вероятностей в цепи Маркова с непрерывным временем. «Основное уравнение» здесь — не эпитет, а перевод термина англ. Master equation. Для вектора-строки распределения вероятностей основное кинетическое уравнение имеет вид:

и совпадает, по существу, с прямым уравнением Колмогорова. В физической литературе чаще используют векторы-столбцы вероятностей и записывают основное кинетическое уравнение в виде, который явно использует закон сохранения полной вероятности:

где

Если для основного кинетического уравнения существует положительное равновесие , то его можно записать в форме

Функции Ляпунова для основного кинетического уравнения[править | править вики-текст]

Для основного кинетического уравнения существует богатое семейство выпуклых функций Ляпунова — монотонно меняющихся со временем функций распределения вероятностей. Пусть  — выпуклая функция одного переменного. Для любого положительного распределения вероятностей () определим функцию Моримото :

.

Производная по времени, если удовлетворяет основному кинетическому уравнению, есть

.

Последнее неравенство справедливо из-за выпуклости .

Примеры функций Моримото [править | править вики-текст]

  • , ;
эта функция — расстояние от текущего распределения вероятностей до равновесного в -норме. Сдвиг по времени является сжатием пространства вероятностных распределений в этой норме. (О свойствах сжатий см. статью Теорема Банаха о неподвижной точке.)
  • , ;
эта функция — (минус) энтропия Кульбака (см. Расстояние Кульбака — Лейблера). В физике она соответствует свободной энергии, деленной на (где  — постоянная Больцмана,  — абсолютная температура):
если (распределение Больцмана), то
.
  • , ;
эта функция — аналог свободной энергии для энтропии Бурга, широко используемой в обработке сигналов:
  • , ;
это квадратичное приближение для (минус) энтропии Кульбака вблизи точки равновесия. С точностью до постоянного во времени слагаемого эта функция совпадает с (минус) энтропией Фишера, которую даёт следующий выбор,
  • , ;
это (минус) энтропия Фишера.
  • , ;
это один из аналогов свободной энергии для энтропии Тсаллиса. Энтропия Тсаллиса (Tsallis entropy)
служит основой для статистической физики неэкстенсивных величин. При она стремится к классической энтропии Больцмана — Гиббса — Шеннона, а соответствующая функция Моримото — к (минус) энтропии Кульбака.

Практическое применение[править | править вики-текст]

Одной из первых научных дисциплин, в которой цепи Маркова нашли практическое применение стала лингвистика, в частности, текстология. Сам Марков для иллюстрации своих результатов исследовал зависимость в чередовании гласных и согласных в первых главах «Евгения Онегина» и «Детских годов Багрова-внука»[1].

Примечания[править | править вики-текст]

  1. Майстров, Л. Е. Развитие понятия вероятности. — Наука, 1980. — С. 188. — 269 с.

Литература[править | править вики-текст]