T-симметрия

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

T-симме́три́я («симметрия по отношению к обращению времени») — симметрия уравнений, описывающих законы физики, по отношению к операции замены времени t на −t (то есть к обращению времени). В квантовой механике математически записывается, как равенство нулю коммутатора оператора гамильтона и антиунитарного оператора обращения времени

 T: t \mapsto -t.

Физические величины, меняющие знак при обращении времени, называются T-нечётными, не меняющие знак — T-чётными. Физическая величина, являющаяся произведением любого числа T-чётных величин и чётного числа T-нечётных величин, T-чётна. Если величина определяется как произведение нечётного числа T-нечётных величин и любого числа T-чётных величин, она T-нечётна. Умножение на T-нечётную величину изменяет T-чётность произведения, на T-чётную — не изменяет. Квадрат (и любая чётная степень) T-нечётной величины T-чётна, нечётная степень — T-нечётна.

Физические величины, чётные и нечётные относительно T-преобразования.

T-чётные T-нечётные
Величина Обозначение Величина Обозначение
Кинематика
Положение частицы в пространстве \vec x\! Время t\!
Ускорение частицы \vec a\! Скорость частицы \vec v\!
Угловое ускорение частицы \vec \varepsilon\! Угловая скорость частицы \vec \omega\!
Динамика
Энергия E\! Линейный импульс частицы \vec p\!
Сила, действующая на частицу \vec f\! Угловой момент частицы (и орбитальный, и спиновый) \vec l\!
Плотность энергии \varepsilon\! Мощность N\!
Электродинамика
Электрический потенциал (напряжение, ЭДС) \varphi,~ U\! Электромагнитный векторный потенциал \vec A\!
Напряжённость электрического поля \vec E\! Магнитная индукция \vec B\!
Электрическое смещение \vec D\! Напряжённость магнитного поля \vec H\!
Плотность электрического заряда \rho\! Плотность электрического тока \vec j\!
Электрическая поляризация \vec P\! Намагниченность \vec M\!
Тензор напряжений электромагнитного поля \sigma_{ij}\! Вектор Пойнтинга \vec S\!

Все массы и заряды, а также остальные константы, не связанные со слабым взаимодействием, тоже обладают симметрией при обращении времени.

Формулы классической механики, классической электродинамики, квантовой механики, теории относительности не меняются при обращении времени. Термодинамика, где действует второе начало термодинамики (закон неубывания энтропии), несимметрична относительно обращения времени, хотя на уровне механических законов, описывающих движение частиц термодинамической системы, время обратимо. Это связано с большей вероятностью пребывания термодинамической системы в макросостоянии, которое реализуется бо́льшим числом (равновероятных) микросостояний.

В микромире T-симметрия нарушается в слабых взаимодействиях. Любая разумная теория поля должна быть CPT-инвариантна (теорема Людерса — Паули). Однако CP-симметрия в стандартной модели нарушается: CP-нарушение наблюдается в слабых взаимодействиях в кварковом секторе модели, см. CKM-матрица. CP-нарушение теоретически может наблюдаться и в сильных взаимодействиях, но CP-нарушающий член здесь сильно ограничен ненаблюдением в эксперименте электрического дипольного момента нейтрона (см. Проблема слабого CP-нарушения, Аксион). Из того, что CP-симметрия нарушена при сохранении CPT-симметрии, следует неинвариантность относительно T-симметрии.

Из симметрии относительно обращения времени выводится равенство нулю электрического дипольного момента элементарных частиц. Напротив, если какая-либо система обнаруживает ненулевой электрический дипольный момент, это означает, что она неинвариантна относительно обращения времени (а также относительно отражения координат) — T- и P-нечётна.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П. Теоретическая физика. — Издание 4-е, исправленное. — М.: Физматлит, 2002. — Т. IV. Квантовая электродинамика. — 720 с. — ISBN 5-9221-0058-0.
 п·о·р 
C, P и T-симметрии
Зарядовое сопряжение | P-симметрия | T-симметрия
CP-симметрия | CPT-инвариантность
pin-группа | Чётность