Пересечение множеств

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Пересечение и

Пересече́ние мно́жеств в теории множеств — это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам. Пересечение двух множеств и обычно обозначается , но в редких случаях может обозначаться .

Определение[править | править вики-текст]

Пересечение двух множеств[править | править вики-текст]

Пусть даны множества и . Тогда их пересечением называется множество

Пересечение семейства множеств[править | править вики-текст]

Пусть дано семейство множеств Тогда его пересечением называется множество, состоящее из элементов, которые входят во все множества семейства:

Свойства[править | править вики-текст]

Пример[править | править вики-текст]

Пусть Тогда

Примечания[править | править вики-текст]

  1. В. А. Ильин, В. А. Садовничий, Бл. Х. Сендов. Глава 2. Вещественные числа // Математический анализ / Под ред. А. Н. Тихонова. — 3-е изд., перераб. и доп. — М.: Проспект, 2006. — Т. 1. — С. 66. — 672 с. — ISBN 5-482-00445-7.

См. также[править | править вики-текст]