Простые числа-близнецы

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Простые числа-близнецы, или парные простые числа — пары простых чисел, отличающихся на 2.

Общая информация[править | править вики-текст]

Все пары простых-близнецов, кроме (3, 5), имеют вид так как числа с другими вычетами по модулю 6 делятся на 2 или на 3. Если учитывать также делимость на 5, то окажется, что все пары близнецов, кроме первых двух, имеют вид , либо . Для любого целого m ≥ 2, пара (m, m + 2) является парой простых чисел-близнецов тогда и только тогда, если 4[(m - 1)! + 1] + m делится на m(m + 2) (следствие теоремы Вильсона).

Первые простые числа-близнецы[1]:

  (3,  5),    (5,  7),    (11, 13),   (17, 19),   (29, 31),   (41, 43),   (59, 61), 
  (71,  73),  (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),
  (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),
  (419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),
  (641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Наибольшими известными простыми-близнецами являются числа [2]. Они были найдены 24 декабря 2011 года в рамках проекта распределенных вычислений PrimeGrid[3][4].

Предполагается, что таких пар бесконечно много, но это не доказано. По первой гипотезе Харди — Литтлвуда (англ.), количество пар простых-близнецов, не превосходящих x, асимптотически приближается к

где  — константа простых-близнецов:

История[править | править вики-текст]

Вопрос о том, бесконечно ли множество простых чисел-близнецов, был одним из величайших открытых вопросов в теории чисел в течение многих лет.[источник не указан 404 дня] Гипотеза о бесконечном числе простых чисел близнецов утверждает: «Существует бесконечно много таких простых , что и  — тоже простое». В 1849 году де Полиньяк выдвинул более общую гипотезу: «Для любого натурального существует бесконечное число таких пар чисел и , что ».

17 апреля 2013 года, Итан Чжан анонсировал доказательство того, что для некоторого целого меньше 70 миллионов существует бесконечно много пар простых чисел, которые отличаются не более чем на . Работа была принята в Анналы математики в мае 2013 года. 30 мая 2013 года австралийский математик Скотт Морисон опубликовал запись в блоге SBSEMINAR, объединяющем нескольких недавних аспирантов-математиков Беркли Морисон с помощью компьютерных вычислений и снизил оценку до 59 470 640[4]. Буквально через несколько дней австралийский математик, лауреат Филдсовской медали Теренс Тао доказал, что граница может быть уменьшена на порядок — до 341 640[4]. Впоследствии он предложил проекту Polymath совместными усилиями оптимизировать границу.

В ноябре 2013 года 27-летний британский математик Джэймс Мэйнард применил алгоритм, разработанный в 2005 году математиками Дэниелем Голдстоном, Яношом Пинтцем и Семом Йилдиримом, под названием GPY (аббревиатура по первым буквам фамилий), и доказал, что существует бесконечно много соседних простых чисел, лежащих на расстоянии не более 600 друг от друга. В день выхода препринта работы Джеймса Мэйнарда Теренс Тао опубликовал в личном блоге пост с предложением запустить новый проект, polymath8b, и уже через неделю оценка была снижена до 576, а 6 января 2014 — до 270. Наилучший научно доказанный результат был достигнут в апреле 2014 года Пэйсом Нильсеном из университета Брайгама Янга в Юте — 246[5][4].

В предположении справедливости гипотезы Эллиота — Халберстама и её обобщения оценка может быть снижена до 12 и 6 соответственно[6].

Теорема Бруна[править | править вики-текст]

Ещё Эйлер выяснил (1740), что «ряд обратных простым» расходится:

Норвежский математик Вигго Брун доказал (1919), что и ряд обратных величин для пар близнецов сходится:

Это означает, что если простых близнецов и бесконечно много, то они все же расположены в натуральном ряду довольно редко. Впоследствии была доказана сходимость аналогичного ряда для обобщённых простых близнецов.

Значение называется константой Бруна для простых-близнецов.

Списки[править | править вики-текст]

Самые большие известные простые близнецы

  • (200700 цифр)
  • (100355 цифр)
  • (58711 цифр)
  • (51780 цифр)
  • (51780 цифр)
  • (51779 цифр)

Простые числа-триплеты[править | править вики-текст]

Это тройка различных простых чисел, разность между наибольшим и наименьшим из которых минимальна. Наименьшими простыми числами, отвечающими заданному условию, являются — (2, 3, 5) и (3, 5, 7). Данная пара триплетов исключительна, так как во всех остальных случаях разность между первым и третьим членом равна шести. Обобщённо: последовательность простых чисел (p, p+2, p+6) или (p, p+4, p+6) называется триплетом.

Первые простые числа-триплеты[7]:

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353), (457, 461, 463), (461, 463, 467), (613, 617, 619), (641, 643, 647), (821, 823, 827), (823, 827, 829), (853, 857, 859), (857, 859, 863), (877, 881, 883), (881, 883, 887)

На данный момент, наибольшими известными простыми-триплетами являются числа:

(p, p+2, p+6), где p = 2072644824759 × 233333 − 1 (10047 цифр, ноябрь, 2008, Norman Luhn, François Morain, FastECPP)

Квадруплеты простых чисел[править | править вики-текст]

Четвёрки простых чисел вида (p, p+2, p+6, p+8) или сдвоенные близнецы или квадруплеты[8]:

(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439), (13001, 13003, 13007, 13009), (15641, 15643, 15647, 15649), (15731, 15733, 15737, 15739), (16061, 16063, 16067, 16069), (18041, 18043, 18047, 18049), (18911, 18913, 18917, 18919), (19421, 19423, 19427, 19429), (21011, 21013, 21017, 21019), (22271, 22273, 22277, 22279), (25301, 25303, 25307, 25309), …

По модулю 30 все квадруплеты, кроме первого, имеют вид (11, 13, 17, 19).

По модулю 210 все квадруплеты, кроме первого, имеют вид либо (11, 13, 17, 19), либо (101, 103, 107, 109), либо (191, 193, 197, 199).

Секступлеты простых чисел[править | править вики-текст]

Шестёрки простых чисел вида (p, p+4, p+6, p+10, p+12, p+16)[9]:

(7, 11, 13, 17, 19, 23), (97, 101, 103, 107, 109, 113), (16057, 16061, 16063, 16067, 16069, 16073), (19417, 19421, 19423, 19427, 19429, 19433), (43777, 43781, 43783, 43787, 43789, 43793) …

По модулю 210 все секступлеты, кроме первого, имеют вид (97, 101, 103, 107, 109, 113).

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Последовательности A001359, A006512 в OEIS
  2. The Largest Known Primes
  3. World Record Twin Primes
  4. 1 2 3 4 Сергей Немалевич. Братишка, ты цел? (рус.). Интернет-издание N+1 (6 ноября 2015). Проверено 10 ноября 2015.
  5. Bounded gaps between primes. Polymath. Проверено 27 марта 2014.
  6. http://arxiv.org/abs/1407.4897 and http://arxiv.org/pdf/1407.4897v2.pdf
  7. Последовательности A007529, A098414, A098415 в OEIS
  8. Последовательности A007530, A136720, A136721, A090258 в OEIS
  9. Последовательность A022008 в OEIS