Число Райо

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Число Райо — большое число, названное в честь Агустина Райо, который объявил самое большое число с собственным именем[1][2]. Изначально ему было дано точное определение на «дуэли больших чисел» в Массачусетском технологическом институте 26 января 2007 года[3][4].

Определением числа Райо является вариация определения[5]:

Самое маленькое число, большее, чем любое конечное число, определённое выражением на языке теории множеств с использованием гугола символов или меньше.

Позднее первоначальный вариант определения был уточнён, и теперь определение звучит следующим образом: «Самое маленькое число, большее чем любое конечное число, которое может быть определено выражением на языке первого порядка теории множеств с использованием менее, чем гугола (10100) символов»[4].

Формальное определение числа использует следующую формулу второго порядка, где [φ] — формула нумерации Гёделя, а s — назначение переменной[5]:

∀R {
{для любой (закодированной) формулы [ψ] и любой переменной t
(R( [ψ],t) ↔
( ([ψ] = `xi ∈ xj' ∧ t(x1) ∈ t(xj)) ∨
([ψ] = `xi = xj' ∧ t(x1) = t(xj)) ∨
([ψ] = `(∼θ)' ∧ ∼R([θ],t)) ∨
([ψ] = `(θ∧ξ)' ∧ R([θ],t) ∧ R([ξ],t)) ∨
([ψ] = `∃xi (θ)' и, для некоторого xi-вариантного t' от t, R([θ],t'))
)} →
R([φ],s)}

Учитывая эту формулу, число Райо определяется следующим образом[5]:

Самое маленькое число, большее, чем любое конечное число m со следующим свойством: существует формула φ(x1) в языке первого порядка теории множеств (как представлено в определении `Sat') с менее, чем гуголом символов и x1, как единственной свободной переменной, такое что (1) существует назначение переменной s, определяющее m к x1, т. о., что Sat([φ(x1)], s) и (2) для любого назначения переменной t, если Sat([φ(x1)], t), то t определяет m к x1.

См. также[править | править код]

Примечания[править | править код]

  1. CH. Rayo's Number. The Math Factor Podcast. Дата обращения 24 марта 2014.
  2. Kerr, Josh Name the biggest number contest (недоступная ссылка) (7 December 2013). Дата обращения 27 марта 2014. Архивировано 20 марта 2016 года.
  3. Elga, Adam Large Number Championship. Дата обращения 24 марта 2014.
  4. 1 2 Manzari, Mandana. Profs Duke It Out in Big Number Duel (31 January 2007). Дата обращения 24 марта 2014.
  5. 1 2 3 Rayo, Augustin Big Number Duel. Дата обращения 24 марта 2014.