Число Райо

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Число Райо — большое число, названное в честь Агустина Райо, который объявил самое большое число с собственным именем[1][2]. Изначально ему было дано точное определение на «дуэли больших чисел» в Массачусетском технологическом институте 26 января 2007 года[3][4].

Определением числа Райо является вариация определения[5]:

Самое маленькое число, большее, чем любое конечное число, определённое выражением на языке теории множеств с использованием гугола символов или меньше.

Позднее первоначальный вариант определения был уточнён, и теперь определение звучит следующим образом: «Самое маленькое число, большее чем любое конечное число, которое может быть определено выражением на языке первого порядка теории множеств с использованием менее, чем гугола (10100) символов»[4].

Формальное определение числа использует следующую формулу второго порядка, где [φ] — формула нумерации Гёделя, а s — назначение переменной[5]:

∀R {
{для любой (закодированной) формулы [ψ] и любой переменной t
(R( [ψ],t) ↔
( ([ψ] = `xi ∈ xj' ∧ t(x1) ∈ t(xj)) ∨
([ψ] = `xi = xj' ∧ t(x1) = t(xj)) ∨
([ψ] = `(∼θ)' ∧ ∼R([θ],t)) ∨
([ψ] = `(θ∧ξ)' ∧ R([θ],t) ∧ R([ξ],t)) ∨
([ψ] = `∃xi (θ)' и, для некоторого xi-вариантного t' от t, R([θ],t'))
)} →
R([φ],s)}

Учитывая эту формулу, число Райо определяется следующим образом[5]:

Самое маленькое число, большее, чем любое конечное число m со следующим свойством: существует формула φ(x1) в языке первого порядка теории множеств (как представлено в определении `Sat') с менее, чем гуголом символов и x1, как единственной свободной переменной, такое что (1) существует назначение переменной s, определяющее m к x1, т. о., что Sat([φ(x1)], s) и (2) для любого назначения переменной t, если Sat([φ(x1)], t), то t определяет m к x1.

См. также[править | править код]

Примечания[править | править код]

  1. CH. Rayo's Number. The Math Factor Podcast. Дата обращения: 24 марта 2014.
  2. Kerr, Josh Name the biggest number contest (недоступная ссылка) (7 December 2013). Дата обращения: 27 марта 2014. Архивировано 20 марта 2016 года.
  3. Elga, Adam Large Number Championship. Дата обращения: 24 марта 2014.
  4. 1 2 Manzari, Mandana. Profs Duke It Out in Big Number Duel (31 January 2007). Дата обращения 24 марта 2014.
  5. 1 2 3 Rayo, Augustin Big Number Duel. Дата обращения: 24 марта 2014.