Пластическое число

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Иррациональные числа
γζ(3)ρ — 2 — 3 — 5 — φδs — α — e — π — δ

В математике пластическое число (также известное как пластическая константа) — это единственный действительный корень уравнения

x^3=x+1.\;

Его численное значение

\rho = \sqrt[3]{\frac{1}{2}+\frac{1}{6}\sqrt{\frac{23}{3}}}+\sqrt[3]{\frac{1}{2}-\frac{1}{6}\sqrt{\frac{23}{3}}},\,

приблизительно равно 1,32471795724474602596090885447809734073440405690173336453401505030282785124554759405469934798178728032991 … (цифры образуют последовательность A060006 в OEIS).

Пластическое число иногда также называют серебряным числом, но чаще это название используют для серебряного сечения 1+\sqrt 2.

Название пластическое число (изначально на голландском plastische getal) было дано в 1928 году Гансом ван дер Лааном. В отличие от названий золотого и серебряного сечений, слово пластический не имело никакого отношения к какому-либо веществу, а больше относилось к тому, что этому можно придать трехмерную форму (Padovan 2002; Shannon, Anderson, and Horadam 2006).

Свойства[править | править вики-текст]

Пластическое число является пределом отношения последовательных членов последовательностей Падована и Перрина и имеет для них такой же смысл, как золотое сечение для последовательности Фибоначчи и серебряное сечение для чисел Пелля.

Пластическое число также является корнем уравнений:

x^5 = x^4 + 1
x^5 = x^2 + x + 1
x^5 = x^4 + x^3 - x
x^6 = x^2 + 2x + 1

и т.п.

Пластическое число является наименьшим PV-числом.

Ссылки[править | править вики-текст]