Память

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Структуры мозга, участвующие в процессах памяти, по Шульговскому В.В.[1]

Па́мять — материальный феномен фиксации, сохранения и воспроизведения информации о взаимодействии между объектами.[2]

В психологии памятью обозначают комплекс познавательных способностей и высших психических функций по накоплению, сохранению и воспроизведению знаний и навыков. Память в разных формах и видах присуща всем высшим животным. Наиболее развитый уровень памяти характерен для человека.[3][4]


Пионером в исследовании памяти человека считается Герман Эббингауз, ставивший эксперименты на себе (основной методикой было заучивание бессмысленных списков слов или слогов).

Память в нейрофизиологии[править | править вики-текст]

Память - одно из свойств нервной системы, заключающееся в способности какое-то время сохранять информацию о событиях внешнего мира и реакциях организма на эти события, а также многократно воспроизводить и изменять эту информацию[5].

Память свойственна животным, имеющим достаточно развитую центральную нервную систему (ЦНС). Объём памяти, длительность и надёжность хранения информации, как и способность к восприятию сложных сигналов среды и выработке адекватных реакций, пропорциональны числу задействованных в этих процессах нервных клеток.

У кишечнополостных формируются лишь простые суммационные рефлексы, у большинства членистоногих и моллюсков память выражается в привыкании, то есть в торможении более или менее готовых программ поведения или отдельных реакций, неадекватных определённым условиям среды. Головоногие моллюски по способности к обучению сравнимы с птицами и млекопитающими. В онтогенезе высших животных возможности памяти как по объёму, так и по сложности запоминаемых ситуаций возрастают по мере созревания нейронов и миелинизации нервных волокон мозга.

Физиологические исследования памяти обнаруживают 2 основных этапа её формирования, которым соответствуют 2 вида памяти: кратковременная и долговременная. Кратковременная память характеризуется временем хранения информации от долей секунд до десятков минут и разрушается воздействиями, влияющими на согласованную работу нейронов (электрошок, наркоз, гипотермия и др.). Долговременная память, время хранения информации в которой сравнимо с продолжительностью жизни организма, устойчива к воздействиям, нарушающим кратковременную память. Переход от первого вида памяти ко второму, называемый консолидацией, постепенен и связан с активацией ряда биохимических процессов.[6] Опыты с иссечением участков коры больших полушарий головного мозга и электрофизиологическими исследования показывают, что «запись» каждого события распределена по более или менее обширным зонам мозга. Материальным носителем информации о разных событиях является не возбуждение разных нейронов, а различные комбинации совозбуждённых нейронов (нейросети). Новые реакции вырабатываются и запоминаются нервной системой в основном либо на основе создания новых синаптических связей между имеющимися нейронами, либо на основе изменения эффективности уже имеющихся синаптических связей[6]. Под запоминанием (долговременным) подразумевается изменение способности одних нейронов возбуждаться при возбуждении других нейронов[7]. Долговременные изменения эффективности синапсов могут быть обусловлены изменениями в биосинтезе белков, от которых зависит чувствительность синаптической мембраны к медиатору (долговременная потенциация). Установлено, что биосинтез белков активируется при возбуждении нейронов на разных уровнях организации ЦНС, а блокада синтеза нуклеиновых кислот или белков затрудняет или исключает формирование долговременной памяти. Очевидно, что одна из функций активации синтеза при возбуждении — структурная фиксация нейронных сетей, что и лежит в основе долговременной памяти[6]. Установление ассоциаций между нейронами (то есть путей распространения возбуждения) может происходить как за счёт увеличения проводимости имеющихся синапсов, так и в результате возникновения дополнительных синапсов. Оба возможных механизма нуждаются в интенсификации белкового синтеза. Первый — сводится к частично изученным явлениям клеточной адаптации и хорошо согласуется с представлением об универсальности основных биохимических систем клетки. Второй — требует направленного роста отростков нейронов[6].

По современным представлениям, память является неотъемлемой частью таких процессов как

  • Обучение[1]
  • Прогнозирование будущего и воображение несуществующего (по-видимому, оба процесса являются процедурами «нарезания и перетасовки фрагментов воспоминаний») [7][8]
  • Сознание и самоидентификация индивидуума[7] [9][10][11]

Память и обучение[править | править вики-текст]

Привыкание можно рассматривать как суммацию тормозных стимулов.

Память и обучение являются сторонами одного процесса. Под обучением подразумевают обычно механизмы приобретения и фиксации информации, а под памятью - механизмы хранения и извлечения этой информации.

Процессы обучения можно разделить на неассоциативные и ассоциативные. Неассоциативное обучение рассматривается как эволюционно более древнее и не подразумевающее связи между тем, что запоминается и какими-либо ещё стимулами. Ассоциативное основывается на формировании связи между несколькими стимулами. Например, классический вариант выработки условного рефлекса по Павлову: установление связи между нейтральным условным стимулом и безусловным стимулом, вызывающим безусловный рефлекторный ответ.

Безусловные рефлексы в эту классификацию не входят, так как осуществляются на основе унаследованных паттернов связей между нервными клетками.

Неассоциативное обучение делится на суммацию, привыкание, долговременную потенциацию и импринтинг[5].


Суммация[править | править вики-текст]

Вариант с участием блокируемых магнием глутамат-эргических ионных (Ca, Na) каналов (каналы NMDA-типа), способных вернуться в неактивное состояние только через часы.

Суммация - постепенное увеличение реакции на повторяющиеся предъявления ранее индифферентного стимула. Результатом суммации является обеспечение реакции организма на слабые, но длительно действующие стимулы, которые потенциально могут иметь какие-то последствия для жизнедеятельности индивида.

В обычной ситуации реакция развивается так: сильный стимул вызывает в чувствительном нейроне целую пачку из потенциалов действия, что приводит к большому выбросу медиатора из синоптического окончания аксона чувствительного нейрона на двигательном нейроне, и этого оказывается достаточно для возникновения надпорогового постсинаптического потенциала и запуска в мотонейроне потенциала действия.

Иная ситуация наблюдается при развитии суммации.

Один сценарий развития суммации заключается в ритмичном использовании серии слабых стимулов, каждый из которых недостаточен для выброса медиатора в синаптическую щель. При этом если частота стимуляции достаточно велика, то в пресинаптическом окончании накапливаются ионы кальция, так как ионные насосы не успевают откачивать их в межклеточную среду. В итоге очередной потенциал действия может вызвать выброс медиатора, которого хватит на то, что бы возбудить постсинаптический мотонейрон. Если при этом ритмичную стимуляцию ранее подлороговыми стимулами не прерывать, то приходящие ПД будут nродолжать запускать рефлекс, так как высокое содержание Са2+ в окончании чувствительного нейрона сохраняется. Если же сделать паузу в стимуляции, то Ca2+ будет удален и для запуска рефлекса слабыми стимулами опять потребуется предварительная суммация.

Другой сценарий развития суммации наблюдается при однократном, но сильном раздражении, в результате чего к пресинаптическому окончанию на двигательном нейроне приходит высокочувствительная серия импульсов, приводящая к поступлению в окончание большого количества ионов Са2+, которого хватает на возбуждение следующего вцепи нейрона ранее подпороговым стимулом. Продолжительность такого эффекта может составлять секунды.

Способность к суммации, по-видимому, лежит в основе кратковременной нейрологической памяти. Получая какую-либо информацию через систему анализаторов (приглядываясь, прислушиваясь, принюхиваясь, осторожно пробуя новую для нас пищевую приправу), мы обеспечиваем ритмическую стимуляцию синапсов, через которые проходит сенсорный сигнал. Эти синапсы в течение нескольких минут сохраняют повышенную возбудимость, облегчая проведение импульсов, и, таким образом, сохраняет след о переданной информации. Однако суммация, будучи эволюционно ранним механизмом обучения, быстро исчезает и не может противостоять любым сильным внешним воздействиям на организм.[5]

1 - гиппокамп; 2 - свод; 3 - мамиллярное тело; 4 - передниеядра таламуса; 5 - поясная извилина; 6 - зубчатая извилина

Привыкание[править | править вики-текст]

При многократном раздражении средней силы реакция на него ослабляется или вообще исчезает. Это явление называют "привыкание" (или "габитуация").

Причины привыкания разнообразны и первым из них является адаптация рецепторов. Вторая причина - накопление Са2+ в пресинатических окончаниях на тормозных нейронах. При этом повторные сигналы, исходно незначимые для тормозных нейронов, постепенно суммируются, а затем запускают тормозные нейроны, активность которых блокирует прохождение сигналов по рефлекторной дуге. Привыкание можно рассматривать как суммацию тормозных сигналов. Нужно подчеркнуть, что суммация и привыкание, как и другие формы синаптической пластичности являются просто следствием структуры синапсов и организации нейронов. [5]

Долговременная потенциация[править | править вики-текст]

Долговременная потенциация возникает в том случае, животному предъявляют некий стимул, который оно различает, но который при этом слишком слаб для того, чтобы вызвать ответную реакцию. После длительной паузы ( 1 - 2 ч) животному предъявляют сильный стимул, который вызывает исследуемую реакцию. Следующую стимуляцию проводят еще через 1 - 2 ч с помощью слабого сигнала, ранее не приводившего к срабатыванию рефлекса. У животных, у которых нервная система способна к долговременной потенциации, возникает рефлекторный ответ. В дальнейшем интервал между сильной и слабой стимуляцией может быть увеличен до 5 и даже 10 ч, а возбудимость нервной системы все время будет оставаться повышенной.

Долговременная потенциация может рассматриваться как вариант "длительной" кратковременной памяти, распространяющейся на дневной период бодрствования человека - с утра до вечера.[5]


Импринтинг[править | править вики-текст]

Вариант с участием глутамин-эргических рецепторов сопряжённых, например, с аденилат-циклазой, с последующим усилением экспрессии генов рецепторов к глутамину.

Это явление определяют как устойчивую индивидуальную избирательность по отношению к внешним стимулам в определенные периоды онтогенеза. Наиболее известны следующие варианты импринтинга: запоминание родителя детенышем; запоминание детёныша родителем; импринтинг будущего полового партнёра.

В отличие от условного рефлекса, эта связь, во-первых, образуется только в строго определенный период жизни животного; во-вторых, образуется без подкрепления; в-третьих, в дальнейшем оказывается очень стабильной, практически не подлежит угасанию и может сохраняться в течение всей жизни особи. Было nоказано, что импринтинr сопровождается активацией нейронов промежуточной области медиовентрального гиперстриатума. Повреждение этой области нарушало у цыплят и импринтинг, и другие виды памяти.

В процессе запоминания/обучение по типу импринтинга устанавливаются контакты групп нейронов одного ядра со строго определенными группами другого ядра. По мере обучения могут либо увеличиваться размеры нейронов, их количество в пределах соответствующих структур, число шипиков и синаптических контактов - либо число нейронов, синаптических связей и NMDА-рецепторов в синапсах может даже уменьшаться, но сродство оставшихся рецепторов к специфическому медиатору будет возрастать.


Можно предложить следующую модель развития импринтинга.

Выделяющаяся из окончания нейрона глутаминовая кислота действует на метаботропные рецепторы на поверхности постсинаптического нейрона и запускает выработку вторичного (внутриклеточного) посредника (например, цАМФ). Вторичный посредник через каскад регуляторных реакций усиливает синтез белков, формирующих новые синапсы к глутамату, которые встраиваются в мембрану нейрона таким образом, чтобы улавливать сигналы от самого активного пресинаптического окончания, передающего информацию о характеристике объекта импринтинга. Встраивание в мембрану новых рецепторов увеличивает эффективность синаптической передачи, и сумма вызванных постсинаптических потенциалов от приходящих сигналов достигает пороговою уровня. Затем возникнут ПД и поведенческая реакция будет запущена.


Следует подчеркнуть, что нейрохимические и синаптические изменения протекают не мгновенно, а требуют времени. Для успешного импринтинга важно наличие стабильного сенсорного "давления" на обучающийся нейрон, например, постоянное присутствие матери. Если это условие не выполняется, то импринтинг вообще не возникает.

Обученные нейроны способны поддерживать концентрацию рецепторов на постсинаптической мембране "запечатленного" синапса на постоянном высоком уровне, что обеспечивает стабильность импринтинга, позволяющую рассматривать его как специфический вариант долговременной памяти. [5]


Ассоциативное обучение[править | править вики-текст]

Отличие от импринтинга в том, что необходима одновременная стимуляция дополнительным нейромедиатором.

Ассоциативное обучение основывается на образовании связи (ассоциации) между двумя стимулами. В качестве примера можно рассмотреть формирование условного рефлекса, когда на один нейрон одновременно подаётся сигнал и от некоторого незначительного стимула, и от центра положительного подкрепления из гипоталамуса. При этом вероятно, что на разных постсинаптических участках генерируются различные вторичные посредники, и изменение экспрессии генов рецепторов к нейромедиаторам, действующим на данный нейрон будет обусловлено суммарным эффектом этих вторичных посредников[5].


Предположительно[5], что процессы консолидации памяти начинаются с усиления глутаматной передачи, за счёт глутаматных рецепторов NMDA-типа. Такие рецепторы способны связать глутамат только после некоторой предварительной деполяризации мембраны, вызванной поступлением в постсинаптическую клетку ионов натрия в результате работы каналов, связанных с другим типом глутаматных рецепторов. Связав глутамат, NMDA-рецепторы инактивируются только по прошествии продолжительного времени (часы). В активном состоянии они связываются с каналами для ионов кальция. Повышение концентрации кальция приводит к активации ряда киназ, запускающих каскад дальнейших реакций. В частности, активированная Ca2+ протеинкиназа А переходит в ядро, регулируя там экспрессию целого ряда генов, что в конечном счёте приводит к формированию новых синапсов между взаимодействующими в процессе ассоциативного обучения нейронами. По-мимо этого активация киназ приводит к изменению активности других ионных каналов, дополнительно увеличивая проницаемость постсинаптической мембраны обучающегося нейрона к ионам кальция и уменьшая - к ионам калия. Кроме того, в синапсах наблюдается агрегация белковых молекул в слоистые структуры, формирующие транссинаптические каналы (волокна), что резко облегчает прохождение медиатора и резко повышает проводимость синапса.


Методы исследования[править | править вики-текст]

  • Методы клинической и экспериментальной психофизиологии
  • Методы физиологии поведения
  • Методы гистохимии
  • Методы электрофизиологии мозга и отдельных нейронов
  • Фармакологические методы
  • Методы аналитической биохимии

В зависимости от задач, подлежащих решению, исследование механизмов П. осуществляется на разных объектах — от человека до культуры нервных клеток[6].


Память и сон[править | править вики-текст]

Воздействие 36-часовой депривации сна на кодирование декларативной памяти человека. Испытуемых разделили на 2 группы: контрольную и тех, кого лишали сна. Людям предлагали выучить слова, различной эмоциональной окраски. По прошествии 36 часов обе группы тестировали на долю запомненных слов. Тёмные столбики - контроль, светлые - группа, лишённая сна. Вариант А - весь запомненный материал, а вариант Б - эффекты, возникающие если запоминаемый материал разделён на эмоционально-позитивный (I), эмоционально-негативный (II) и эмоционально-нейтральный (III)[12]

Работы по исследованию депривации (лишения) сна на процессы памяти показывают[13][12], что лишённые сна люди воспроизводят в разы меньше материала по сравнению с людьми, которых сна не лишали. При 36-часовой депривации наблюдается ухудшение способности воспроизводить материал на 40%. Интересная закономерность обнаруживается, если проанализировать отдельно влияние сна на способность воспроизводить материал разной эмоциональной окраски. Во-первых, результаты указывают на то, что эмоционально-окрашенный материал запоминается лучше эмоционально-нейтрального, независимо от количества сна. Что согласуется с положением, что память консолидация памяти происходит при значительном участии систем подкрепления, формирующих эмоции. Кроме того, оказывается, что хотя ухудшение запоминания при депривации сна наблюдается во всех случаях, интенсивность этого влияния существенно зависит от эмоциональной окраски материала. Сильнее всего затрудняется воспроизведение эмоционально-нейтрального и особенно - эмоционально-позитивного материала. В то время как изменения в воспроизведении эмоционально-негативного материала мало и статистически недостоверно.


Исследования роли дневного сна на формирование процедурной памяти показывают, что при инструментальном обучении люди демонстрируют улучшение навыков только после сна - продолжительностью хотя бы в несколько часов, независимо от того, поспали они днём или ночью. [13]

Влияние дневного сна на процедурную память, связанную с двигательной активностью. Тёмные столбики - группа, спавшая днём, светлые - контрольная группа (спали только ночью), "*" - достоверно [12]

Однозначного ответа на вопрос о всех механизмах связи процессов сна и памяти нет, как нет и ответа на вопрос о возможных компенсаторных механизмах, развивающихся после некоторых воздействий на структуры мозга, обычно задействованные в процессах сна и памяти [13]. Некоторые исследователи критикуют положения о связи механизмов сна с механизмами памяти, утверждая либо что сон вообще играет лишь пассивную (хотя и позитивную) роль в запоминании, уменьшая отрицательную интерференцию следов памяти, либо что быстрый сон не задействован в процессах памяти. В пользу последней позиции приводят следующие группы аргументов[13]:

  • Поведенческие: все опыты по изучению депривации быстрого сна "методом островков" (экспериментальное животное помещается в условия, где при потере позы - что неизбежно в стадии быстрого сна - оно падает в воду и пробуждается) нельзя считать убедительными, из-за неадекватности методики
  • Фармакологические: все три основных класса антидепрессантов (ингибиторы МАО, "трициклики" и ингибиторы обратного захвата серотонина) полностью или почти полностью подавляют быстрый сон, но не вызывают нарушения обучаемости и памяти ни у больных, ни у подопытных животных
  • Клинические: имеется несколько сообщений о больных с билатеральными разрушениями в области моста - у таких больных полностью и, по-видимому, навсегда исчезал быстрый сон, но никаких жалоб на нарушения обучаемости и памяти от таких больных не поступало


Память и стресс[править | править вики-текст]

Показано, что стресс влияет на работу гиппокампа, являющегося ключевой структурой, задействованной в консолидации памяти. Кратковременный всплеск АКТГ и кортизола способствуют консолидации воспоминаний[14][15]. Более сильный выброс АКТГ блокирует консолидацию воспоминаний[14]. Длительно повышенный уровень кортизола, видимо, способствует деградации ткани гиппокампа (до 8% у ветеранов войны во Вьетнаме, страдавших от посттравматического стрессового расстройства и до 12% у детей, страдавших от жестокого обращения)[15].


Генетика памяти[править | править вики-текст]

Процессы памяти[править | править вики-текст]

  • Запоминание — это процесс памяти, посредством которого происходит запечатление следов, ввод новых элементов ощущений, восприятия, мышления или переживания в систему ассоциативных связей. Запоминание может быть произвольным и непроизвольным, основу произвольного запоминания составляет установление смысловых связей — результат работы мышления над содержанием запоминаемого материала.
  • Хранение — процесс накопления материала в структуре памяти, включающий его переработку и усвоение. Сохранение опыта дает возможность для обучения человека, развития его перцептивных (внутренних оценок, восприятия мира) процессов, мышления и речи.
  • Воспроизведение и узнавание — процесс актуализации элементов прошлого опыта (образов, мыслей, чувств, движений). Простой формой воспроизведения является узнавание — опознание воспринимаемого объекта или явления как уже известного по прошлому опыту, установлением сходств между объектом и образом его в памяти. Воспроизведение бывает произвольным и непроизвольным. При непроизвольном образ всплывает в сознании без усилий человека.

Если в процессе воспроизведения возникают затруднения, то идёт процесс припоминания. Отбор элементов, нужных с точки зрения требуемой задачи. Воспроизведенная информация не является точной копией того, что запечатлено в памяти. Информация всегда преобразовывается, перестраивается.

  • Забывание — потеря возможности воспроизведения, а иногда даже узнавания ранее запомненного. Наиболее часто забывается то, что незначимо. Забывание может быть частичным (воспроизведение не полностью или с ошибкой) и полным (невозможность воспроизведения и узнавания). Выделяют временное и длительное забывание.

Теоретические модели памяти в психологии[править | править вики-текст]

  • Модель Дональда Нормана (Donald Norman) и Нэнси Во (Nancy Waugh) выделяет две структуры памяти: первичная память хранящая временную информацию, которую человек использует в данный момент и вторичная память сохраняющая информацию на длительное время.[16]
  • Модель Ричарда Аткинсона (Richard Atkinson) и Ричарда Шиффрина (Richard Shiffrin) выделяет три структуры памяти: сенсорное хранилище (sensory store) или сенсорная память, содержащее небольшой объем информации, сохраняемую на небольшой период; кратковременное хранилище, сохраняющее ограниченный объем информации, сохраняющийся более продолжительный срок, в нем протекают процессы, регулирующие обмен информацией с долговременной памятью; долговременная память, сохраняющая значительный объем информации на продолжительный период или постоянно. Аткинсон и Шиффрин рассматривали эти хранилища не в качестве определенных психологических структур, но как гипотетическую, ментальную модель помогающую понять функционирование памяти.[17]
  • Модель уровней переработки Фергуса Крейка (Fergus I. M. Craik) и Роберта Локхарта (Robert S. Lockhart) разработанная в 1972 г.[18] Память является функцией переработки стимульной информации. Память не включает фиксированное количество хранилищ. То, на каком уровне памяти сохраняется информация зависит от процессов переработки. Чем более глубокий уровень переработки информации, тем более долгосрочный характер будет иметь хранение в памяти этой информации. П. И. Зинченко экспериментально показал как уровень переработки влияет на запоминание.[19]
  • Модель рабочей памяти Алана Бэддли. Рабочая память является частью долговременной памяти и включает в себя кратковременную память. Рабочая память содержит только ту информацию из долговременной памяти, которая находится в активной обработке. В рабочей памяти находятся зрительно-пространственный набросок, фонологическая петля, центральный управляющий элемент (central executive) координирующий когнитивные процессы (связывающий информацию поступающую из разнообразных источников и управляющий вниманием), эпизодический буфер (episodic buffer), другие подсистемы.
Сенсорные процессы формирующие зрительно-пространственный набросок, а также фонологическую петлю в модели памяти Бэддли рассматриваются в рамках модели уровней переработки Фергуса Крейка и Роберта Локхарта как процессы переработки.
  • В концепции Карла Густава Юнга память понимается, как функция контролируемая волей и находящаяся под контролем так называемого "эго-комплекса".[20] «То, что мы называем памятью, — это дар репродуцировать бессознательные содержания, и это — главная функция.» Источником воспоминаний может выступать не только личностный объём бессознательного, но и его коллективный и архаичный слои, что объясняет припоминание в необычных случаях знаний и событий, не принадлежащих личному сознательному опыту индивида. Забывание означает выпадение содержаний из доступной сознанию области, погружение их в бессознательное.

Классификация видов памяти[править | править вики-текст]

Существуют различные типологии памяти:

  • по сенсорной модальности — зрительная (визуальная) память, моторная (кинестетическая) память, звуковая (аудиальная) память, вкусовая память, болевая память.
  • по содержанию — образная память, моторная память, эмоциональная память;
  • по организации запоминания — эпизодическая память, семантическая память, процедурная память;
  • по временным характеристикам — долговременная (декларативная) память, кратковременная память, ультракратковременная память;
  • по физиологическим принципам — определяемая структурой связей нервных клеток (она же долговременная) и определяемая текущим потоком электрической активности нервных путей (она же кратковременная)
  • по наличию цели — произвольная и непроизвольная;
  • по наличию средств — опосредованная и неопосредованная;
  • по уровню развития — моторная, эмоциональная, образная, словесно-логическая.[21]
Критерий Вид
Содержание
  • образная память
  • словесно-логическая память
  • сенсорная память
  • эмоциональная память
Время
  • кратковременная память
  • долговременная память
  • оперативная
  • промежуточная
Организация запоминания
  • эпизодическая память
  • семантическая память
  • процедурная память



Можно построить иную классификацию по содержанию памяти:

Процедурная (память на действия) и декларативная (память на названия). В рамках последней выделяют эпизодическую (память на события и явления индивидуальной жизни человека) и семантическую (знание вещей, не зависящих от индивидуальной жизни человека) [1].

Сенсорная память[править | править вики-текст]

Сенсорная память сохраняет стимульную информацию, возникающую при воздействии стимулов на органы чувств. В сенсорной памяти сохраняется сенсорная информация после прекращения воздействия стимула.[22]

Иконическая память[править | править вики-текст]

Разновидностью сенсорной памяти является иконическая память. Иконическая память — дискретный сенсорный регистратор зрительных стимулов. Особенностью иконической памяти является фиксация информации в целостной, портретной форме.

С исследованием иконической сенсорной памяти, её объёма связаны эксперименты Джорджа Сперлинга[23]. В экспериментах Сперлинг использовал как процедуру «общего отчета» (Whole Report Procedure), так и собственную разработку — процедуру «частичного отчета» (Partial Report Procedure). В силу скоротечности иконической памяти процедура общего отчета не позволяла объективно оценить объём регистрируемой в сенсорной памяти информации, поскольку в ходе самого процесса отчета происходило «забывание» портретной информации, стирание её из сенсорной иконической памяти. Процедура частичного отчета показала, что в иконической памяти осуществляется регистрация 75 % зрительного поля. Эксперименты Сперлинга показали, что информация затухает в иконической памяти быстро (в течение десятых долей секунды). Также было выяснено, что процессы, связанные с иконической памятью, не контролируются ментально. Даже тогда, когда испытуемые не могли наблюдать символы, они по-прежнему сообщали, что продолжают их видеть. Таким образом, субъект процесса запоминания не различает содержание иконической памяти и объекты, которые находятся в окружающей среде.

Стирание информации, находящейся в иконической памяти, другой информацией, поступающей от ощущений, позволяет зрительному ощущению быть более восприимчивым. Такое свойство иконической памяти — стирание — обеспечивает запоминание информации в иконической памяти, учитывая её ограниченный объём, даже в том случае если скорость поступления сенсорной информации превышает скорость затухания сенсорной информации в иконической памяти. Исследования показали, что если зрительная информация поступает достаточно быстро (до 100 миллисекунд), то происходит наложение новой информации на прежнюю, которая ещё находится в памяти, не успев затухнуть в ней и перейти на другой уровень памяти — более долговременный. Эта особенность иконической памяти называется эффектом обратной маскировки. Так, если показать букву, а затем в течение 100 миллисекунд на той же позиции зрительного поля — кольцо, то испытуемый будет воспринимать букву в кольце[24].

Эхоическая память[править | править вики-текст]

Эхоическая память сохраняет стимульную информацию, поступающую через органы слуха.

Тактильная память[править | править вики-текст]

Тактильная память регистрирует стимульную информацию, поступающую через соматосенсорную систему.

Долговременная и кратковременная память[править | править вики-текст]

Нейробиологические исследования обнаруживают 2 основных вида памяти[25]: кратковременная и долговременная.[26] Одно из важнейших открытий Эббингауза состояло в том, что если список не очень велик (обычно 7), то его удаётся запомнить после первого прочтения (обычно список элементов, которые можно запомнить сразу, называют объёмом кратковременной памяти).

Другой закон, установленный Эббингаузом, — количество сохраняющегося материала зависит от промежутка времени с момента заучивания до проверки (так называемая «кривая Эббингауза»). Был открыт позиционный эффект (возникающий, если запоминаемая информация по объёму превышает кратковременную память). Он заключается в том, что лёгкость запоминания данного элемента зависит от места, которое он занимает в ряду (легче запоминаются первые и последние элементы).

В теории памяти Д. О. Хебба считается, что кратковременная память основана на электрофизиологических механизмах, поддерживающих возбуждение связанных нейронных систем, а долговременная память фиксируется структурными изменениями в отдельных клетках, входящими в состав нейронных систем, и связана с химической трансформацией, образованием новых веществ[27].

Кратковременная память[править | править вики-текст]

Кратковременная память существует за счет временных паттернов нейронных связей, исходящих из областей фронтальной (особенно дорсолатеральной, префронтальной) и теменной коры. Сюда попадает информация из сенсорной памяти. Кратковременная память позволяет вспомнить что-либо через промежуток времени от нескольких секунд до нескольких минут без повторения. Повторение сохраняет содержимое кратковременной памяти. Её емкость весьма ограничена. Джордж Миллер во время своей работы в Bell Laboratories провел опыты, показывающие, что ёмкость кратковременной памяти составляет 7±2 объекта (название его знаменитой работы гласит «Волшебное число 7±2»).[28] Современные оценки ёмкости кратковременной памяти несколько ниже, обычно 4-5 объектов, причем известно, что ёмкость кратковременной памяти увеличивается за счёт процесса, называемого «Chunking» (группировка объектов). Например, если предъявить строку

ФСБКМСМЧСЕГЭ

человек будет способен запомнить только несколько букв. Однако, если та же информация будет представлена иным образом:

ФСБ КМС МЧС ЕГЭ[29]

человек сможет запомнить гораздо больше букв потому, что он способен группировать (объединять в цепочки) информацию о смысловых группах букв (в английском оригинале: FBIPHDTWAIBM и FBI PHD TWA IBM[30]). Также Герберт Саймон показал, что идеальный размер для чанков букв и цифр, неважно осмысленных или нет, составляет три единицы[источник не указан 1951 день]. Возможно, в некоторых странах это отражается в тенденции представлять телефонный номер как несколько групп по 3 цифры и конечной группы из 4-х цифр, разделенных на 2 группы по две.

Существуют гипотезы о том, что кратковременная память опирается преимущественно на акустический (вербальный) код для хранения информации и в меньшей степени на зрительный код. В своём исследовании (1964) Конрад показал, что испытуемым труднее вспоминать наборы слов, которые акустически подобны[31].

Современные исследования коммуникации муравьёв доказали, что муравьи способны запоминать и передавать информацию объёмом до 7 бит.[32][33] Более того, продемонстрировано влияние возможной группировки объектов на длину сообщения и эффективность передачи. В этом смысле закон «Волшебное число 7±2» выполнен и для муравьёв.

Долговременная память[править | править вики-текст]

Хранение в сенсорной и кратковременной памяти обычно имеет жестко ограниченную емкость и длительность, то есть информация остается доступной некоторое время, но не неопределенно долго. Напротив, долговременная память может хранить гораздо большее количество информации потенциально бесконечное время (на протяжении всей жизни). Например, некоторый 7-значный телефонный номер может быть запомнен в кратковременной памяти и забыт через несколько секунд. С другой стороны, человек может помнить, за счет повторения, телефонный номер долгие годы. В долговременной памяти информация кодируется семантически: Бэддли (Baddeley, 1960) показал, что после 20-минутной паузы испытуемые имели значительные затруднения во вспоминании списка слов с похожим значением (например: большой, огромный, крупный, массивный).

Долговременная память поддерживается более стабильными и неизменными изменениями в нейронных связях, широко распределенных по всему мозгу. Гиппокамп важен при консолидации информации из кратковременной в долговременную память, хотя, по-видимому, собственно в нем информация не хранится. Скорее гиппокамп вовлечен в изменение нейронных связей в период после 3 месяцев от начального обучения.

Одной из первичных функций сна является консолидация информации. Возможно показать[как?], что память зависит от достаточного периода сна между тренировкой и тестом. Причем гиппокамп воспроизводит активность текущего дня во время сна.


Нарушения памяти[править | править вики-текст]

Большое количество знаний об устройстве и работе памяти, которое сейчас имеется, было получено при изучении феноменов её нарушения. Нарушения памяти — амнезии — могут быть вызваны различными причинами. В 1887 русский психиатр С. С. Корсаков в своей публикации «Об алкогольном параличе» впервые описал картину грубых расстройств памяти, возникающих при сильном алкогольном отравлении. Открытие под названием «корсаковский синдром» прочно вошло в научную литературу. В настоящее время все нарушения памяти делятся на:

  • Гипомнезии — ослабление памяти. Ослабление памяти может возникнуть с возрастом или/и как следствие какого-либо мозгового заболевания (склероза мозговых сосудов, эпилепсии и т. д.).
  • Гипермнезии — аномальное обострение памяти по сравнению с нормальными показателями, наблюдается гораздо реже. Люди, отличающиеся этой особенностью, забывают события с большим трудом (Соломон Шерешевский).
  • Парамнезии, которые подразумевают ложные или искаженные воспоминания, а также смещение настоящего и прошлого, реального и воображаемого.

Особо выделяется детская амнезия — потеря памяти на события раннего детства. По-видимому, этот вид амнезии связан с незрелостью гиппокампальных связей, либо с использованием других методов кодирования «ключей» к памяти в этом возрасте. Впрочем, есть данные, что воспоминания первых лет жизни (и даже внутриутробного существования) могут быть частично актуализированы в изменённых состояниях сознания[34][35].


Описание памяти в мнемотехнике[править | править вики-текст]

Свойства памяти[править | править вики-текст]

Закономерности памяти, выявляемые в мнемотехнике[править | править вики-текст]

Память имеет объём, ограниченный количеством стабильных процессов, являющихся опорными при создании ассоциаций (связей, отношений)

Успешность припоминания зависит от способности переключать внимание на опорные процессы, восстанавливать их. Основной приём: достаточное количество и частота повторений.

Имеет место такая закономерность, как кривая забывания.

Мнемотехнические "законы" памяти
Закон памяти Практические приёмы реализации
Закон интереса Интересное запоминается легче.
Закон осмысления Чем глубже осознать запоминаемую информацию, тем лучше она запомнится.
Закон установки Если человек сам себе дал установку запомнить информацию, то запоминание произойдёт легче.
Закон действия Информация, участвующая в деятельности (т.е. если происходит применение знаний на практике) запоминается лучше.
Закон контекста При ассоциативном связывании информации с уже знакомыми понятиями новое усваивается лучше.
Закон торможения При изучении похожих понятий наблюдается эффект "перекрытия" старой информации новой.
Закон оптимальной длины ряда Длина запоминаемого ряда для лучшего запоминания не должна намного превышать объём кратковременной памяти.
Закон края Лучше всего запоминается информация, представленная в начале и в конце.
Закон повторения Лучше всего запоминается информация, которую повторили несколько раз.
Закон незавершённости Лучше всего запоминаются незавершённые действия, задачи, недосказанные фразы и т.д.

Мнемонические приёмы запоминания[править | править вики-текст]

  • Образование смысловых фраз из начальных букв запоминаемой информации.
  • Рифмизация.
  • Запоминание длинных терминов или иностранных слов с помощью созвучных.
  • Нахождение ярких необычных ассоциаций (картинки, фразы), которые соединяются с запоминаемой информацией.
  • Метод Цицерона на пространственное воображение.
  • Метод Айвазовского основан на тренировке зрительной памяти.
  • Методы запоминания цифр:
    • закономерности;
    • знакомые числа.
  • Способ связующих звеньев применим для запоминания имен и фамилий, названий книг, то есть для любых рядов слов.
  • Способ образования структурных связей помогает запечатлеть информацию, для которой трудно образовать смысловые или ассоциативные связи[36].

Мифология, религия, философия о памяти[править | править вики-текст]

  • В древнегреческой мифологии имеется миф о реке Лета. Лета обозначает «забвение» и является неотъемлемой частью царства мёртвых. Умершие есть те, кто потеряли память. И напротив, некоторые, удостоенные предпочтения, — среди них Тиресий или Амфиарай, — сохранили свою память и после кончины.
  • Противоположностью реки Лета является Богиня Мнемозина, персонифицированная Память, сестра Кроноса и Океаноса — мать всех муз. Она обладает Всеведением: согласно Гесиоду (Теогония, 32 38), она знает «всё, что было, всё, что есть, и всё, что будет». Когда поэтом овладевают музы, он пьет из источника знания Мнемозины, это значит, прежде всего, что он прикасается к познанию «истоков», «начал».
  • Согласно философии Платона Анамнесис — припоминание, воспоминание — понятие, описывающее основную процедуру процесса познания.

Другие разновидности памяти[править | править вики-текст]

Под общее определение памяти, кроме нервной памяти, подпадает также ряд отличных от неё явлений[2]:

  • Говорят про память неживой материи. Например, след времени на скалах является своеобразной памятью, материальным носителем является порода скалы, а структура этой породы несёт информацию об её возрасте и условиях формирования, так как ими она и формируется. Некоторые кристаллы сохраняют память о воздействии на них электромагнитных полей. Жидкие кристаллы могут изменять и на некоторое время сохранять свои оптические свойства под воздействием электрического тока. Структура атомов сохраняет информацию о термоядерных процессах в звёздах, где атомы формировались. Основным отличием памяти неживого можно считать неспособность активно (в первую очередь, структурно) воспроизводить информацию. Такая способность, видимо, и стала основой жизни, одной из основных характеристик которой является самовоспроизведение.[2]
  • Генетическая память
  • Эпигенетическая память
  • Иммунологическая память
  • Собственно, нервная память
  • Можно говорить о памяти, используемой в вычислительных машинах (электронных, механических, химических и пр.)


См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 3 Шульговский В.В. "Физиология высшей нервной деятельности с основами нейробиологии". - М.:Академия, 2008. - 528 с.
  2. 1 2 3 Механизмы памяти / Ашмарин И.П, Бородкин Ю.С, Бундзен П.В. и др. Отв.ред. Вартонян Г.А. - Л.:Наука, 1987. - 432 с.
  3. Memory., Encyclopedia of Psychology: 8-Volume Set by Alan E. Kazdin – Oxford University Press March 16, 2000
  4. Memory (Stanford Encyclopedia of Philosophy)
  5. 1 2 3 4 5 6 7 8 Каменская М.А, Каменский А.А. "Основы нейробиологии". - М.:Дрофа, 2014. - 365 с.
  6. 1 2 3 4 5 «Биологический энциклопедический словарь» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.
  7. 1 2 3 Картер Р. «Как работает мозг». – М.:АСТ:Corpus, 2014. – 224 с.
  8. Hassabis D, Kumaran D, Vann S.D, Maguire E.A. Patients with hippocampal amnesia cannot imagine new experiences // PNAS 104 (2007) pp.1726-1731
  9. Ackerly S.S, Benton A. Report of a case of a bilateral frontal lobe defect // Publication of Association for Research in Neurology and Dental Disease 27, pp. 479-504
  10. O’Connel l R.A. SPECT imaging study of the brain in acute mania and schizophrenia // Journal of Neuroimaging 2 (1995), pp. 101-104
  11. Daly I. Mania // The Lancet 349:9059 (1997), pp. 1157-1159
  12. 1 2 3 Walker M.P, Stickgold R. Sleep, memory, and plasticity // Annual Review of Psychology. 57 (2006), pp. 139-166
  13. 1 2 3 4 Ковальзон В.М. "Основы сомнологии: физиология и нейрохимия цикла "бодрствование-сон"". - М.:Бином, 2012. - 239 с.
  14. 1 2 Ткачук В.А. "Введение в молекулярную эндокринологию". - М.:Изд-во Моск. ун-та, 1983. - 256 с.
  15. 1 2 Bremner J.D. et al. MRI-based measurement of hippocampal volume in post-traumatic stress disorder//Biological Phychiatry 41 (1997), pp. 23-32
  16. Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review, 75,
  17. Atkinson, R. C, & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225, 82-90.
  18. Craik, FIM; Lockhart RS (1972). «Levels of processing: A framework for memory research». Journal of Verbal Learning & Verbal Behavior 11 (6): 671-84.
  19. Зинченко П. И. Проблема непроизвольного запоминания // Научн. записки Харьковского пед. ин-та иностр. языков. 1939. Т. 1. С. 145—187.
  20. К. Юнг Тавистокские лекции
  21. Маклаков А. Г. Общая психология. — СПб.: Питер, 2001. — 592 с.
  22. Coltheart, Max (1980). «Iconic memory and visible persistence». Perception & Psychophysics 27 (3): 183—228.
  23. Sperling, George (1960). «The information available in brief visual presentations». Psychological Monographs 74: 1-29.
  24. Unwin. Baxt, N. (1871). Ueber die Zeit, welche notig ist, damit ein Gesichtseindruck zum Bewusstsein
  25. Джон Килстром профессор Калифорнийский Университет Беркли Лекция 10. Память. Часть 1.
  26. Squire, L. R., & Knowlton, B. J.. The medial temporal lobe, the hippocampus, and the memory systems of the brain. In M. Gazaniga (Ed.), The new cognitive neurosciences (2nd ed., pp. 765-780). Cambridge, MA: MIT Press., 2000
  27. Б. Мещеряков, В. П. Зинченко, Большой психологический словарь, СПб: прайм-ЕВРОЗНАК, 2003.- 672 с. Статья «Памяти физиологические механизмы». С. 370.
  28. Miller, G. A. (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81-97.
  29. ФСБ — Федеральная Служба Безопасности, КМС — кандидат в мастера спорта, МЧС — Министерство Чрезвычайных Ситуаций, ЕГЭ — единый государственный экзамен.
  30. FBI — Federal Bureau of Investigation, PHD — Philosophy Doctor, TWA — Trans World Airlines, IBM — International Business Machines.
  31. Conrad, R. (1964). «Acoustic Confusions in Immediate Memory». British Journal of Psychology 55: 75–84.
  32. Резникова Ж. И., Рябко Б. Я., Теоретико-информационный анализ «языка» муравьев // Журн. общ. биологии, 1990, Т. 51, № 5, 601—609.
  33. Резникова Ж. И. Язык муравьев до открытия доведет, Наука из первых рук, 2008, N 4 (22), 68-75.
  34. Станислав Гроф Области человеческого бессознательного. — М.: Институт трансперсональной психологии, 1994. — 280 с. — ISBN 5-88389-001-6.
  35. Атанассиос Кафкалидес. Знания из лона. Аутопсиходиагностика с психоделическими лекарствами. — СПб: ИПТП, 2007. — ISBN 5-902247-11-X.
  36. Кузина С. А. Как улучшить свою память. — М.: Издательство агентства «Яхтсмен». — 1994.

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]