Лампа накаливания

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Лампа накаливания общего назначения (230 В, 60 Вт, 720 лм, цоколь E27, габаритная высота ок. 110 мм

Ла́мпа нака́ливания — электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама.

Принцип действия[править | править вики-текст]

В лампе накаливания используется эффект нагревания проводника, обычно проволочного, (тела накаливания) при протекании через него электрического тока (тепловое действие тока). Температура тела накаливания повышается после замыкания электрической цепи. Все тела, температура которых превышает температуру абсолютного нуля температур излучают электромагнитное тепловое излучение в соответствии с законом Планка. Cпектральная плотность мощности излучения (Функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 °C (температура начала красного свечения, видимого человеческим глазом в темноте). Для зрения человека, оптимальный, физиологически самый удобный, спектральный состав видимого света отвечает излучению абсолютно чёрного тела с температурой поверхности фотосферы Солнца 5770 K. Так как неизвестны вещества, способные без разрушения выдержать температуру фотосферы Солнца, в телах накаливания современных ламп накаливания, применяется тугоплавкий, и относительно недорогой металлический вольфрам, — элемент, рекордный по высоте температуры плавления. Рабочие температуры вольфрамовых нитей ламп накаливания лежат в пределах 2000—2800 °C. Поэтому, спектр ламп накаливания смещён в красную часть спектра. Чем меньше температура тела накаливания, тем меньшая доля энергии, подводимой к нагреваемой проволоке, преобразуется в полезное видимое излучение, и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в видимое излучение, часть рассеивается в виде тепла в результате процессов теплопроводимости и конвекции наполняющего газа внутри колбы лампы. Только малая доля электромагнитного излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Температура в 5771 К недостижима, так как при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (температура плавления 3410 °C) и, очень редко, осмий (температура плавления 3045 °C).

Для оценки физиологического качества светильников используется понятие цветовой температуры. При типичных для ламп накаливания температурах 2200—2900 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен для человека и меньше подавляет естественную выработку мелатонина[1], важного для регуляции суточных циклов организма, и нарушение его синтеза негативно сказывается на здоровье.

В атмосферном воздухе при высоких температурах вольфрам быстро окисляется в триоксид вольфрама (образуя характерный белый налёт на внутренней поверхности лампы при потере ею герметичности). По этой причине, вольфрамовое тело накала помещают в герметичную колбу, из которой, в процессе изготовления лампы откачивается воздух и заполняется инертным газом — обычно аргоном. На заре индустрии ламп их изготавливали с вакууммированными колбами; в настоящее время только лампы малой мощности (для ламп общего назначения — до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом, аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп уменьшает скорость испарения вольфрамовой нити. Это не только увеличивает срок службы лампы, но и позволяет повысить температуру тела накаливания. Таким образом, световой КПД повышается, а спектр излучения приближается к белому. Внутренняя поверхность колбы газонаполненной лампы медленнее темнеет при распылении материала тела накала в процессе работы, как у вакуумированной лампы.

Все чистые металлы и их многие сплавы (в частности, вольфрам) имеют положительный температурным коэффициентом сопротивления, что означает — увеличение электрического удельного сопротивления с ростом температуры. Эта особенность автоматически стабилизирует электрическую потребляемую мощность лампы на ограниченном уровне при подключении к источнику напряжения (источнику с низким выходным сопротивлением), что позволяет подключать лампы непосредственно к электрическим распределительным сетям без использования ограничивающих ток балластных реактивных или активных двухполюсников, что экономически выгодно отличает их от газоразрядных люминесцентных ламп.

Конструкция[править | править вики-текст]

Конструкция современной лампы. На схеме: 1 — колба; 2 — полость колбы (вакуумированная или наполненная газом); 3 — тело накала; 4, 5 — электроды (токовые вводы); 6 — крючки-держатели тела накала; 7 — ножка лампы; 8 — внешнее звено токоввода, предохранитель; 9 — корпус цоколя; 10 — изолятор цоколя (стекло); 11 — контакт донышка цоколя.

Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции. Крючки-держатели тела накала ламп накаливания (в том числе ламп накаливания общего назначения) изготовляются из молибдена[2]. Лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель — звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы — как правило, в ножке. Назначение предохранителя — предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга, которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. Из-за малой эффективности в настоящее время отказались от их[чего?] применения.

Колба[править | править вики-текст]

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда[править | править вики-текст]

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже — криптон Kr или ксенон Xe (молярные массы: N2 — 28,0134 г/моль; Ar: 39,948 г/моль; Kr — 83,798 г/моль; Xe — 131,293 г/моль).

Галогенная лампа

Особой группой являются галогенные лампы накаливания. Принципиальной их особенностью является введение в полость колбы галогенов или их соединений. В такой лампе испарившийся с поверхности тела накала металл вступает в соединение с галогенами, и затем возвращается на поверхность нити за счёт температурного разложения получившегося соединения. Такие лампы имеют большую температуру спирали, больший КПД и срок службы[источник не указан 158 дней], меньший размер колбы и другие преимущества. Серьезным недостатком[источник не указан 158 дней] является очень низкое электрическое сопротивление галогеновой лампы в холодном состоянии.

Тело накала[править | править вики-текст]

Двойная спираль лампы мощностью 200 Вт (сильно увеличено)
Двойная спираль (биспираль) лампы Osram 200 Вт с токовводами и держателями (увеличено)

Формы тел накала весьма разнообразны и зависят от функционального назначения ламп. Наиболее распространённым является из проволоки круглого поперечного сечения, однако находят применение и ленточные тела накала (из металлических ленточек). Поэтому использование выражения «нить накала» нежелательно — более правильным является термин «тело накала», включенный в состав Международного светотехнического словаря.

Тело накала первых ламп изготавливалось из угля (температура возгонки 3559 °C). В современных лампах применяются почти исключительно спирали из вольфрама, иногда осмиево-вольфрамового сплава. Для уменьшения размеров тела накала ему обычно придаётся форма спирали, иногда спираль подвергают повторной или даже третичной спирализации, получая соответственно биспираль или триспираль. КПД таких ламп выше за счёт уменьшения теплопотерь из-за конвекции (уменьшается толщина ленгмюровского слоя).

Электротехнические параметры[править | править вики-текст]

Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома (I=U/R) и мощность по формуле P=U·I , или P=U²/R. Так как металлы имеют малое удельное сопротивление, для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампах составляет 40—50 микрометров.

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в десять — четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу — при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растет) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока. При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь[править | править вики-текст]

Форма цоколя с резьбой обычной лампы накаливания была предложена Джозефом Уилсоном Суоном. Размеры цоколей стандартизованы. У ламп бытового применения наиболее распространены цоколи Эдисона E14 (миньон), E27 и E40 (число обозначает наружный диаметр в мм). Также встречаются цоколи без резьбы (удержание лампы в патроне происходит за счёт трения или нерезьбовыми сопряжениями — например, байонетным) — британский бытовой стандарт, а также бесцокольные лампы, часто применяемые в автомобилях.

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях — 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul)[3]. Также, аналогично Европе, встречаются цоколи без резьбы.

Разновидности[править | править вики-текст]

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • Вакуумные (самые простые)
  • Аргоновые (азот-аргоновые)
  • Криптоновые (примерно +10 % яркости от аргоновых)[источник не указан 158 дней]
  • Ксеноновые (в 2 раза ярче аргоновых)[источник не указан 158 дней]
  • Галогенные (наполнитель I или Br, в 2,5 раза ярче аргоновых, большой срок службы, не любят недокала, так как не работает галогенный цикл)[источник не указан 158 дней]
  • Галогенные с двумя колбами (более эффективный галогенный цикл за счёт лучшего нагрева внутренней колбы)[источник не указан 158 дней]
  • Ксенон-галогенные (наполнитель Xe + I или Br, наиболее эффективный наполнитель, до 3х раз ярче аргоновых)[источник не указан 158 дней]
  • Ксенон-галогенные с отражателем ИК-излучения (так как большая часть излучения лампы приходится на ИК-диапазон, то отражение ИК-излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
  • Накаливания с покрытием, преобразующим ИК-излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Номенклатура[править | править вики-текст]

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения, их выпуск стал сокращаться;
  • декоративные лампы, выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром ок. 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения, конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение — 12, 24 или 36 (42) В. Область применения — ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы, выпускаемые в окрашенных колбах. Назначение — иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10—25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком), их недостаток — быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации — пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН — локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы — чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6—220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счет особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов, к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы[править | править вики-текст]

Коммутаторная лампа накаливания (24В 35мА)
  • коммутаторные лампы — разновидность сигнальных ламп. Они служили индикаторами на коммутаторных панелях. Представляют собой узкие длинные миниатюрные лампы с гладкими параллельными контактами, что позволяет легко их заменять. Выпускались варианты: КМ 6-50, КМ 12-90, КМ 24-35, КМ 24-90, КМ 48-50, КМ 60-50, где первая цифра означает рабочее напряжение в вольтах, вторая — силу тока в миллиамперах;
  • Фотолампа, перекальная лампа — разновидность лампы накаливания, предназначенная для работы в строго нормированном форсированном по напряжению режиме. По сравнению с обычными имеет повышенную световую отдачу (до 30 лм/Вт), малый срок службы (4—8 часов) и высокую цветовую температуру (3300—3400 К, по сравнению с 2700 К). В СССР выпускались фотолампы мощностью 300 и 500 Вт. Как правило, имеют матированную колбу. В настоящее время (XXI век) практически вышли из употребления, благодаря появлению более долговечных устройств сравнимой и более высокой эффективности. В фотолабораториях обычно осуществлялось питание таких ламп в двух режимах:
    • Пилотное освещение — напряжение снижено на 20—30 % с помощью ЛАТРа. При этом лампа работает с недокалом и имеет низкую цветовую температуру.
    • Номинальное напряжение.[4]
  • Проекционные лампы — для диа- и кинопроекторов. Имеют повышенную яркость (и соответственно, повышенную температуру нити и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.
  • Двухнитевые лампы. В автомобиле — может быть у лампы переднего света одна нить для дальнего света, другая для ближнего, или, к примеру, одна нить для габаритного огня, другая для стоп-сигнала. Кроме того, такие лампы могут содержать экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей. В самолёте посадочно-рулёжная фара имеет основную нить, на которой лампа работает без внешнего охлаждения и дополнительную, включаемую вместе с основной, позволяющяя получить более мощный свет, но только при внешнем охлаждении — обдуве набегающем потоком воздуха.
  • Лампа-фара. Лампа сложной специальной конструкции, применяемая на подвижных объектах, фигурная колба которой выполнена в виде части корпуса фары с отражателем. Конструктивно содержит в себе нить(и) накала, отражатель, рассеиватель, элементы крепления, клеммы и т. д. Лампы-фары широко применяются в современной автомобильной технике и уже достаточно давно в авиации.
  • Малоинерционная лампа накаливания, лампа накаливания с тонкой нитью — использовалась в системах оптической записи звука методом модуляции яркости источника и в некоторых экспериментальных моделях Фототелеграфа. Благодаря малой толщине и массе нити подача на такую лампу напряжения, модулированного сигналом звукового диапазона частот (до примерно 5 кГц), приводила к изменению яркости в соответствии с мгновенным напряжением сигнала.[5] С начала XXI века не находят применения благодаря наличию намного более долговечных твердотельных излучателей света и намного менее инерционных излучателей других типов.
  • Нагревательные лампы — основной источник тепла в блоках термозакрепления лазерных принтеров и копировальных аппаратов. Лампа цилиндрической формы неподвижно устанавливается внутри вращающегося металлического вала, к которому прижимается бумага с нанесенным тонером. За счет тепла, передающегося от вала, тонер расплавляется и впрессовывается в структуру бумаги.
  • Лампы специального спектра излучения. Применяются в разнообразной технике. Например, лампы ультра-фиолетового излучения УФО.

История изобретения[править | править вики-текст]

Лампа Лодыгина
Лампа Томаса Эдисона с нитью накала из угольного волокна.
  • В 1838 году бельгиец Жобар изобретает угольную лампу накаливания [источник не указан 367 дней].
  • В 1840 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью)[6].
  • В 1854 году немец Генрих Гёбель разработал первую «современную» лампу: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой.[7][8] Надо отметить, что большинство исследователей считают эту информацию недостоверной.[источник не указан 277 дней]
  • В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.
  • 11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.
  • В 1875 году В. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них, следующий включался автоматически).
  • В 1875—1876 годах русский электротехник Павел Николаевич Яблочков, работая над «электрической свечой», открыл, что каолин, который он использовал для изоляции углей свечи, электропроводен при высокой температуре. После чего он создал «каолиновую лампу», где «нить накала» была изготовлена из каолина. Особенностью данной лампы было то, что она не требовала вакуума, и «нить накала» не перегорала на открытом воздухе. Однако Яблочков считал, что лампы накаливания неперспективны, и не верил в возможность их применения в широком масштабе. «Каолиновая лампа» была забыта, и позже немецкий физик Вальтер Нернст создал аналогичную лампу, где «нить накала» была изготовлена из магнезии. Лампа Нернста также не требовала вакуума, особенностью «каолиновой лампы» и лампы Нернста является то, что «нить накала» надо разогреть до высокой температуры, чтобы лампа зажглась. В первых лампах «нить накала» подогревалась спичкой, впоследствии стали использовать электрические нагреватели.
  • Английский изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.
  • Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение.
Некоторое время изобретение носило обобщённое имя: «Эдисона-Свена». Цитата из «Собака Баскервилей», говорит Генри Баскервиль: «Подождите, не пройдет и полугодa, кaк я проведу сюдa электричество, и вы не узнaете этих мест! У входa будут гореть фонaри Эдисонa и Свенa в тысячу свечей.»
  • В 1890-х годах А. Н. Лодыгин изобретает несколько типов ламп с нитями накала из тугоплавких металлов[9]. Лодыгин предложил применять в лампах нити из вольфрама (именно такие применяются во всех современных лампах) и молибдена и закручивать нить накаливания в форме спирали. Он предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы во много раз[10]. Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены и газонаполненные лампы (с угольной нитью и заполнением азотом)[11].
  • С конца 1890-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна)[12]
  • В 1904 году венгры Д-р Шандор Юст и Франьо Ханаман получили патент за № 34541 на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году.[13]
  • В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric. В том же 1906 году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.
  • В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.
  • Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным, известным специалистом в области вакуумной техники Ирвингом Ленгмюром, который, работая с 1909 года в фирме «General Electric», ввёл в производство наполнение колбы ламп инертными, точнее — тяжёлыми благородными газами (в частности — аргоном), что существенно увеличило время их работы и повысило светоотдачу.[14]

КПД и долговечность[править | править вики-текст]

Долговечность и яркость в зависимости от рабочего напряжения.

Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Человеческий глаз, однако, видит только узкий диапазон длин волн этого излучения — диапазон видимого излучения. Основная мощность потока излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия (КПД) ламп накаливания (здесь под КПД понимается отношение мощности видимого излучения к полной мощности) достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет около 5 %.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время службы лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.

Уменьшение напряжения питания хотя и понижает КПД, но зато увеличивает долговечность. Так, понижение напряжения в два раза (например, при последовательном включении), уменьшает КПД примерно в 4—5 раз, но, существенно увеличивает срок службы почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к освещённости, например, на лестничных площадках жилых домов. Часто, для этого, при питании переменным током лампу подключают последовательно с диодом, при этом ток в лампе протекает только в течение половины периода. Такое включение снижает мощность в 2 раза, что соответствует снижению эффективного напряжения в √2≃1,41 раз.

Так как стоимость потребленной за время службы лампой накаливания электроэнергии в десятки раз превышает стоимость самой лампы, существует оптимальное напряжение, при котором экономические затраты на освещение минимальны. Оптимальное напряжение несколько выше номинального, поэтому способы повышения долговечности путем понижения напряжения питания с экономической точки зрения убыточны.

Время службы лампы накаливания ограничено в меньшей степени испарением материала нити во время работы, и, в большей степени, возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что, в свою очередь, ведёт к ещё большему нагреву участка нити и интенсивному испарению материала в таких местах, так как мощность в последовательной электричекой цепи пропорциональна I2·r. Таким образом, имеется неустойчивость к утоньшению участков нити. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, лампа выходит из строя.

Наибольший износ нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода устройства плавного запуска.

Зависимость электрического сопротивления нити 12-вольтовой автомобильной лампы накаливания от напряжения.

Вольфрам при комнатной температуре имеет удельное сопротивление всего в 2 раза превышающее удельное сопротивление алюминия. При включении лампы пусковой ток превышает номинальный в 10—15 раз, именно поэтому лампы перегорают обычно в момент включения. Для защиты питающей сети от бросков тока, возникающих в момент перегорания нити лампы при включении, многие лампы, например, бытовые, снабжаются встроенным плавким предохранителем — один из коваровых проводников, соединяющих цоколь лампы с выводом из стеклянного баллона делают тоньше другого, что легко увидеть рассмотрев лампу и именно он является плавким предохранителем. Так, бытовая лампа мощностью 60 Вт, в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева нити лампы её сопротивление возрастает, а мощность падает до номинальной.

Для снижения пускового тока могут использоваться терморезисторы с отрицательным коэффициентом температурного сопротивления. В момент включения резистор холодный и его сопротивление велико. После прогрева его сопротивление многократно уменьшается и на лампу подаётся почти всё напряжение питающей сети.

Реже используются реактивные ограничители пускового тока. Обычно, для этой цели используются дроссели — катушки индуктивности с ферромагнитным сердечником, т. н. балластные дроссели, включаемые последовательно с лампой. В момент включения из-за явления самоиндукции всё напряжение сети падает на дросселе, что ограничивает пусковой ток. При работе материал сердечника в каждом полупериоде сети заходит в глубокое насыщение (в цепях переменного напряжения) и почти всё напряжение сети приложено к лампе. Другой подход при применении балластных дросселей использует зависимость сопротивления нити от температуры. При прогреве сопротивление нити увеличивается, соответственно увеличивается напряжение на лампе что является сигналом для шунтирования дросселя, например, контактом электромагнитного реле, обмотка которого включена параллельно нити. Без шунтирования балластного дросселя мощность лампы снижается на 5—20 %, что может быть полезно для увеличения срока службы лампы.

Также широко используются тиристорные пусковые (автоматические или ручные диммеры).

Низковольтные лампы накаливания при той же мощности имеют больший ресурс и светоотдачу благодаря большему сечению нити накаливания, что позволяет без существенного снижения срока службы повысить температуру нити. Поэтому, в многоламповых светильниках (люстрах) целесообразно применение последовательного включения ламп на меньшее напряжение вместо параллельного включения ламп на напряжение сети[15]. Например, вместо параллельно включенных шести ламп 220 В 60 Вт применить шесть последовательно включённых ламп 36 В 60 Вт, то есть заменить шесть тонких нитей несколькими толстыми, последовательно включёнными. Недостаток этого решения — снижение надёжности освещения. Перегорание любой из последовательно включённых ламп ведёт к полному отказу освещения.

Тип Относительная световая отдача % Световая отдача (Люмен/Ватт)
Лампа накаливания 40 Вт 1,9 % 12,6[16]
Лампа накаливания 60 Вт 2,1 % 14,5[16]
Лампа накаливания 100 Вт 2,6 % 17,5[16]
Галогенные лампы 2,3 % 16
Галогенные лампы (с кварцевым стеклом) 3,5 % 24
Высокотемпературная лампа накаливания 5,1 % 35[17]
Абсолютно чёрное тело при 4000 K 7,0 % 47,5[18]
Абсолютно чёрное тело при 7000 K 14 % 95[18]
Идеально белый источник света 35,5 % 242,5[17]
Источник монохроматического зелёного света с длиной волны 555 нм 100 % 683[19]

Ниже представлено приблизительное соотношение мощности и светового потока для обычных прозрачных ламп накаливания в форме «груши», популярных в России, цоколь E27, 220 В.[20]

Мощность (Вт) Световой поток (лм)[20] Световая отдача (лм/Вт)
200 3100 15,5
150 2200 14,6
100 1360 13,6
75 940 12,5
60 720 12
40 420 10,5
25 230 9,2
15 90 6

Перегоревшую лампу, колба которой сохранила целостность, а нить разрушилась лишь в 1-м месте, можно починить путем встряхиваний и поворотов, таких, чтобы концы нити вновь соединились. При приложении напряжения нить может сплавиться и лампа продолжит работу[источник не указан 158 дней].

Преимущества и недостатки ламп накаливания[править | править вики-текст]

Преимущества:

  • высокий индекс цветопередачи, Ra 100
  • налаженность в массовом производстве
  • низкая цена
  • небольшие размеры
  • отсутствие пускорегулирующей аппаратуры
  • нечувствительность к ионизирующей радиации
  • чисто активное электрическое сопротивление (единичный коэффициент мощности)
  • мгновенное зажигание и перезажигание
  • невысокая чувствительность к сбоям в питании и скачкам напряжения;
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации;
  • возможность работы на любом роде тока;
  • нечувствительность к полярности напряжения;
  • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);
  • незаметность мерцания (10 %[источник не указан 265 дней] для 60 Вт, при больших мощностях коэффициент пульсаций меньше) при работе на переменном токе (важно на предприятиях);
  • отсутствие гудения при работе на переменном токе (ввиду отсутствия электронного балласта, драйвера или преобразователя напряжения);
  • устойчивость к электромагнитному импульсу;
  • возможность использования регуляторов яркости;
  • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату;
  • непрерывный спектр излучения;
  • приятный и привычный в быту спектр; спектр излучения лампы накаливания определяется исключительно температурой рабочего тела и не зависит ни от каких иных условий, что следует из принципа её работы. Он не зависит от применяемых материалов и их чистоты, стабилен во времени и имеет стопроцентную предсказуемость и повторяемость. Это важно в том числе при больших инсталляциях и в светильниках из сотен ламп: нередко можно увидеть, когда при применении современных люминофорных или светодиодных ламп они имеют разный цветовой оттенок в пределах группы. Это уменьшает эстетическое совершенство инсталляций. При неисправности одной лампы часто приходится заменять всю группу целиком, но даже при установке ламп из одной партии встречается девиация спектра.
Спектр излучения: непрерывный 60-ватной лампы накаливания (вверху) и линейчатый 11-ватной компактной люминесцентной лампы (внизу)

Недостатки:

  • низкая световая отдача
  • относительно малый срок службы
  • хрупкость, чувствительность к удару и вибрации
  • бросок тока при включении (примерно десятикратный)
  • при термоударе или разрыве нити под напряжением возможен взрыв баллона
  • резкая зависимость световой отдачи и срока службы от напряжения
  • лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает, в зависимости от мощности, следующих величин: 25 Вт — 100 °C, 40 Вт — 145 °C, 75 Вт — 250 °C, 100 Вт — 290 °C, 200 Вт — 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается ещё сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.[21]
  • нагрев частей лампы требует термостойкой арматуры светильников
  • световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %. Включение электролампы через диод, что часто применяется с целью продления ресурса на лестничных площадках, в тамбурах и прочих затрудняющих замену местах, ещё больше усугубляет её недостаток: значительно уменьшается КПД, а также появляется значительное мерцание света.

Производство[править | править вики-текст]

Картель Фебус[править | править вики-текст]

Международный электроламповый картель — общество Phöbus S. A. — с административным центром в Женеве (Швейцария), существовавший в 1924—1941 годах, объединял в себе более 40 производителей из разных стран, доля продукции которых на мировом рынке достигала 80 % и имеющий влияние на ценовую, патентную политику.[22](недоступная ссылка)

Картелем были разработаны ныне действующие стандарты цоколя Эдисона.[23]

Кроме того, по мнению немецкого журналиста Гельмута Хёге, в 1924 году между участниками картеля была достигнута договорённость об ограничении времени жизни ламп накаливания в 1000 часов. При этом все производители ламп, состоящие в картеле, были обязаны вести строгую техническую документацию по соблюдению мер, предотвращающих 1000-часовое превышение цикла жизни ламп.[24][25] Ситуация описывается в фильме 2010 года «Купить, выбросить, купить. Заговор вокруг лампочки».

Ограничения импорта, закупок и производства[править | править вики-текст]

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные, светодиодные, индукционные и др.) лампы.

1 сентября 2009 года в Евросоюзе в соответствии с директивой 2005/32/EG вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 года запрещены лампы мощностью 100 Вт и более, ламп с матовой колбой 75 Вт и более (с 1 сентября 2010 года[26]) и др. Ожидается, что к 2012 году будут запрещены импорт и производство ламп накаливания меньшей мощности[27].

С 2005 года на Кубе ограничено использование ламп накаливания мощностью более 15 Вт.[источник не указан 1330 дней]

С 2009 года ограничения коснулись также Новой Зеландии и Швейцарии[источник не указан 1330 дней], с 2010 года — Австралии.

В России[править | править вики-текст]

2 июля 2009 года на заседании в Архангельске президиума Государственного совета по вопросам повышения энергоэффективности Президент Российской Федерации Д. А. Медведев предложил запретить в России продажу ламп накаливания[28].

23 ноября 2009 года Д. А. Медведев подписал принятый ранее Государственной думой и утверждённый Советом федерации закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации»[29]. Согласно документу, с 1 января 2011 года на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более, а также запрещается размещение заказов на поставку ламп накаливания любой мощности для государственных и муниципальных нужд; с 1 января 2013 года может быть введён запрет на электролампы мощностью 75 Вт и более, а с 1 января 2014 года — мощностью 25 Вт и более.

Данное решение является спорным. В поддержку его приводятся очевидные доводы сбережения электроэнергии и подталкивания развития современных технологий. Против — соображение, что экономия на замене ламп накаливания полностью сводится на нет повсеместно распространённым устаревшим и энергонеэффективным промышленным оборудованием, линиями электропередачи, допускающими большие потери энергии, а также относительно высокой стоимостью компактных люминесцентных и светодиодных ламп, малодоступных для беднейшей части населения. Кроме того, в России отсутствует налаженная система сбора и утилизации отработавших люминесцентных ламп, что не было учтено при принятии закона и в результате чего ртутьсодержащие люминесцентные лампы бесконтрольно выбрасываются[30][31]. Большинство потребителей не знает о наличии в люминесцентной лампе ртути, так как это не указано на упаковке, а вместо «люминесцентная» написано «энергосберегающая». В условиях низких температур многие «энергосберегающие» лампы оказываются неспособными запуститься. Люминесцентные энергосберегающие лампы неприменимы в прожекторах направленного света, так как светящееся тело в них в десятки раз крупнее нити накаливания, что не даёт возможности узкой фокусировки луча. В силу своей дороговизны, «энергосберегающие» лампы чаще становятся объектом кражи из общедоступных мест (например, подъездов жилых домов), такие кражи наносят более весомый материальный ущерб, а в случае вандализма (повреждение люминесцентной лампы из хулиганских побуждений) — возникает опасность загрязнения помещения парами ртути.

В связи с вступившим в силу запретом на продажу ламп мощностью более 100 Вт некоторые производители начали выпускать лампы мощностью 93-95-97 Вт[32][33][34], а некоторые переименовали свои лампы мощностью от 100 Вт в «теплоизлучатели различного назначения» и продают так[35]. Кроме того, ряд специализированных галогеннных ламп (являющихся по сути лампами накаливания со стандартным цоколем) мощностью более 100 и даже 200 Вт, по состоянию на 2013 г. свободно продаются[36]. Учитывая невозможность на данный момент полноценной альтернативы для определенных моделей ламп накаливания (например используемых в осветительных приборах, софитах, при изготовлении фото- и кинопродукции) люминесцентных и светодиодных ламп, в связи с искажённой цветопередачей из-за ограниченности спектра, можно говорить о том, что определенную часть ламп накаливания запрет всё же не коснётся и у рядового потребителя останется возможность приобретать и использовать лампы накаливания в быту. Распоряжением Правительства РФ от 28.10.2013 N 1973-Р предполагается постепенное ограничение оборота на территории Российской Федерации ламп накаливания в зависимости от их энергетической эффективности и сферы их использования, а также стимулирование спроса на энергоэффективные источники света[37]. Однако, документом конкретных сроков запрета не предусмотрено.

Интересные факты[править | править вики-текст]

  • В США в одном из пожарных отделений города Ливермор (штат Калифорния) есть 60-ваттная[38] лампа ручной работы, известная под именем «Столетняя лампа (англ.)русск.»[39]. Она практически постоянно горит уже более 110 лет, с 1901 года[40]. Необычно высокий ресурс лампе обеспечила в основном работа на малой мощности (4 Bаттa), в глубоком недокале, при очень низком КПД. Лампа включена в Книгу рекордов Гиннесса[41] в 1972 году.
  • В СССР после претворения в жизнь ленинского плана ГОЭЛРО за лампой накаливания закрепилось прозвище «лампочка Ильича». В наши дни так чаще всего называют простую лампу накаливания, свисающую с потолка на электрическом шнуре без плафона.
  • Пока лампа Томаса Эдисона не завоевала популярность, люди спали по 10 часов в сутки[42].
  • Для изготовления обычной лампочки требуется, как минимум, 7 металлов[43].

Примечания[править | править вики-текст]

  1. Лампы с белыми LED подавляют выработку мелатонина — Газета. Ru | Наука
  2. Молибден // Энциклопедический словарь юного химика. 2-е изд. / Сост. В. А. Крицман, В. В. Станцо. — М.: Педагогика, 1990. — С. 147—148. — ISBN 5-7155-0292-6.
  3. Buy Tools, Lighting, Electrical and DataComm Supplies // GoodMart.com
  4. Фотолампа // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
  5. Е. М. Голдовский. Советская кинотехника. Издательство Академии Наук СССР, Москва-Ленинград. 1950, C. 61
  6. Лампа Де Ла Рю
  7. Давид Шарле. Король изобретательства Томас Альва Эдисон
  8. Электротехническая энциклопедия. История изобретения и развития электрического освещения
  9. A. de Lodyguine, U.S. Patent 575,002 «Illuminant for Incandescent Lamps». Application on January 4, 1893.
  10. Г.С.Ландсберг. Элементарный учебник физики (рус.). Проверено 15 апреля 2011. Архивировано из первоисточника 1 июня 2012.
  11. en:Incandescent light bulb
  12. [ Лампа накаливания] — статья из Малого энциклопедического словаря Брокгауза и Ефрона
  13. The History of Tungsram (PDF). Архивировано из первоисточника 1 июня 2012. (англ.)
  14. Ganz and Tungsram - the 20th century (англ.)(недоступная ссылка — история). Проверено 4 октября 2009. Архивировано из первоисточника 20 июня 2007.
  15. А. Д. Смирнов, К. М. Антипов. Справочная книга энергетика. Москва, «Энергоатомиздат», 1987.
  16. 1 2 3 Keefe, T.J. The Nature of Light (2007). Проверено 5 ноября 2007. Архивировано из первоисточника 1 июня 2012.
  17. 1 2 Klipstein, Donald L. The Great Internet Light Bulb Book, Part I (1996). Проверено 16 апреля 2006. Архивировано из первоисточника 1 июня 2012.
  18. 1 2 Black body visible spectrum
  19. Теоретический предел. Значение следует из определения единицы силы света кандела в Международной системе единиц (СИ).
  20. 1 2 Лампы накаливания, характеристики. Архивировано из первоисточника 1 июня 2012.
  21. Таубкин С. И. Пожар и взрыв, особенности их экспертизы — М., 1999 с. 104
  22. http://russeca.kent.edu/InternationalBusiness/Chapter09/t09p23.html Ограничительная деловая практика в области передачи технологии (ОДП)
  23. Fritz Werr, Internationale Wirtschaftszusammenschlüsse (Kartell und Konzern) und Staat als Vertragspartner, S. 29, Gottfried Eißfeldt, Kartellierung der Elektroindustrie, S. 75.
  24. http://blogs.taz.de/hausmeisterblog/2007/02/06/das-gluehbirnenkartell/ Helmut Höge, Das Glühbirnenkartell, blogs.taz.de 06.02.2007  (нем.)
  25. Standardizing Committee der Phöbus S. A., Resolution on The Enforcement Of the Standard Life For General Lighting Service Lamps, Brüssel, im April 1929, Landesarchiv Berlin, Rep. FB Osram 231/0.109. Festgelegt wurde die Dauer eines jeden Birnenlebens am 17./18. Februar 1925 auf einer Tagung des General Committees in Paris, Landesarchiv Berlin, Rep. FB Osram 231/0.152.
  26. 1 сентября в ЕС прекратится продажа 75-ваттных ламп накаливания.
  27. ЕС ограничивает продажу ламп накаливания с 1 сентября, европейцы недовольны. «Интерфакс-Украина».
  28. Медведев предложил запретить «лампочки Ильича», Lenta.ru, 02.07.2009.
  29. Федеральный закон Российской Федерации от 23 ноября 2009 года № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации».
  30. Опасная спираль - Обзор прессы - Энергетика и промышленность России - WWW.EPRUSSIA.RU - информационный портал энергетика. Проверено 30 января 2013. Архивировано из первоисточника 2 февраля 2013.
  31. http://www.kungur-adm.ru/files/economics/genplan/doc_1321341439.docx
  32. Саботируй вето, Lenta.ru, 28.01.2011.
  33. «Лисма» приступила к выпуску новой серии ламп накаливания, ГУП РМ «ЛИСМА».
  34. Голь на выдумки хитра: в продаже появились лампы накаливания мощностью 95 Вт, ЭнергоВОПРОС.ру.
  35. У лампочек Ильича появились правнуки
  36. Лампы галогенные с дополнительной колбой — цоколь Е14, Е27, В15d (Philips, OSRAM, GE, Camelion) | «МПО Электромонтаж»
  37. Распоряжение Правительства РФ от 28.10.2013 N 1973-Р <Об утверждении плана мероприятий, обеспечивающего ограничение оборота на территории Российской Федерации ламп накаливания и предусматривающего систему действий, направленных на стимулирование спроса на энергоэффективные источники света>
  38. The World’s Oldest Light Bulb Has Been On for 110 Years
  39. Столетняя лампа — Странное. Инфо
  40. Light Bulb Methuselahs (англ.). www.roadsideamerica.com. Проверено 24 августа 2008. Архивировано из первоисточника 1 июня 2012.
  41. «Longest burning light bulb», Guiness World Records, <http://www.guinnessworldrecords.com/Search/Details/Longest-burning-light-bulb/63240.htm> .
  42. В оригинале эти сведения были опубликованы в статье Дженнифер Харпер под названием «Спать надо ровно семь часов — не меньше и не больше», написанной для The Washington Times в августе 2008 года. Однако сейчас статья перемещена в архив. Ссылки, косвенно подтверждающие это утверждение: 1 (англ.), 2 (англ.)
  43. «Что такое? Кто такой?» Издательство Астрель. Москва, 2006 г.

Литература[править | править вики-текст]

  • A. Zukauskas, M.S. Shur and R. Caska, Introduction to solid-state ligthing, John Willey & Sohn, 2002
  • K. Bando, Symp. Proc. Of the 8th Int. Symp. on the Sci. & Tech. of Ligth Sources 1998, 80

Ссылки[править | править вики-текст]