Последовательность

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Последовательность — это набор элементов некоторого множества:

  • для каждого натурального числа можно указать элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента (члена) последовательности можно указать следующий за ним элемент последовательности.

Таким образом, последовательность оказывается результатом последовательного выбора элементов заданного множества. И, если любой набор элементов является конечным, и говорят о выборке конечного объёма, то последовательность оказывается выборкой бесконечного объёма.

Последовательность по своей природе — отображение, поэтому его не следует смешивать с множеством, которое «пробегает» последовательность.

В математике рассматривается множество различных последовательностей:

Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей.

Определение[править | править вики-текст]

Пусть задано некоторое множество X элементов произвольной природы. | Всякое отображение f\colon\mathbb{N}\to X множества натуральных чисел \mathbb{N} в заданное множество X называется последовательностью (элементов множества X).

Образ натурального числа n, а именно, элемент x_n=f(n), называется n-ым членом или элементом последовательности, а порядковый номер члена последовательности — её индексом.

Связанные определения[править | править вики-текст]

  • Подмножество f\left[\mathbb{N}\right] множества X, которое образовано элементами последовательности, называется носителем последовательности: пока индекс пробегает множество натуральных чисел, точка, «изображающая» последовательность, «перемещается» по носителю.
  • Если взять возрастающую последовательность натуральных чисел, то её можно рассматривать как последовательность индексов некоторой последовательности: если взять элементы исходной последовательности с соответствующими индексами (взятыми из возрастающей последовательности натуральных чисел), то можно снова получить последовательность, которая называется подпоследовательностью заданной последовательности.

Комментарии[править | править вики-текст]

  • Не следует смешивать носитель последовательности и саму последовательность! Например, точка a\in X как одноточечное подмножество \{a\}\subset X является носителем стационарной последовательности вида a,a,a,\dots.
  • Любое отображение множества \mathbb{N} в себя также является последовательностью.

Обозначения[править | править вики-текст]

Последовательности вида

x_1,\quad x_2,\quad x_3,\quad\dots

принято компактно записывать при помощи круглых скобок:

(x_n) или (x_n)_{n=1}^{\infty}

иногда используются фигурные скобки:

\{x_n\}_{n=1}^{\infty}

Допуская некоторую вольность речи, можно рассматривать и конечные последовательности вида

(x_n)_{n=1}^N,

которые представляют собой образ начального отрезка последовательности натуральных чисел.

См. также[править | править вики-текст]