Корпускулярно-волновой дуализм

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Квантовая механика
Введение
Математические основы
См. также: Портал:Физика

Корпускулярно-волновой дуализм[1] (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц[2][3].

Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение — электроны и свет; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства[4] (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).

Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике[5].

Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля.

Волны де Бройля[править | править код]

Количественное выражение принцип корпускулярно-волнового дуализма получает в идее волн де Бройля. Для любого объекта, проявляющего одновременно волновые и корпускулярные свойства, имеется связь между импульсом и энергией , присущими этому объекту как частице, и его волновыми параметрами — волновым вектором , длиной волны , частотой , циклической частотой . Эта связь задаётся соотношениями[6][7]:

где и — редуцированная и обычная постоянная Планка, соответственно. Эти формулы верны для релятивистских энергии и импульса.

Волна де Бройля ставится в соответствие любому движущемуся объекту микромира; таким образом, в виде волн де Бройля и свет, и массивные частицы подвержены интерференции и дифракции[4]. В то же время чем больше масса частицы, тем меньше её дебройлевская длина волны при той же скорости, и тем сложнее зарегистрировать её волновые свойства. Грубо говоря, взаимодействуя с окружением, объект ведёт себя как частица, если длина его дебройлевской волны много меньше характерных размеров, имеющихся в его окружении, и как волна — если много больше; промежуточный случай может быть описан только в рамках полноценной квантовой теории.

Физический смысл волны де Бройля таков: квадрат модуля амплитуды волны в определённой точке пространства равен плотности вероятности обнаружения частицы в данной точке, если будет проведено измерение её положения. В то же время, пока измерение не проведено, частица в действительности не находится в каком-либо одном конкретном месте, а «размазана» по пространству в виде дебройлевской волны.

Идея волны де Бройля как эмпирическая закономерность помогает делать общие выводы о том, будут ли в той или иной ситуации проявляться волновые свойства массивных частиц, и получать количественные оценки в простых случаях — например, оценить ширину дифракционных полос при дифракции электронов. Но эта идея не описывает реальность непосредственно и не позволяет полностью правильно описать поведение частиц с учётом всех основных эффектов квантовой механики (например, квантовая запутанность). Поэтому в основе математического описания (нерелятивистской) квантовой механики лежит другой, более корректно и строго определённый объект с похожим смыслом — волновая функция[3].

История развития[править | править код]

Вопросы о природе света и вещества имеют многовековую историю, однако до определённого времени считалось, что ответы на них обязаны быть однозначными: свет — либо поток частиц, либо волна; вещество либо состоит из отдельных частиц, подчиняющихся классической механике, либо представляет собой сплошную среду.

Атомно-молекулярное учение на протяжении своего развития долго оставалось в статусе лишь одной из возможных теорий, однако к концу XIX века существование атомов и молекул уже не вызывало сомнений. В 1897 году Томсон экспериментально обнаружил электрон, а в 1911 году Резерфорд открыл ядро атома. Была разработана боровская модель атома, в которой электрон подразумевался точечной или очень малой частицей. Однако модель Бора была не вполне последовательна, требовалась другая теория.

Что же касается света, то корпускулярная теория света, представляющая световой луч как поток отдельных частиц, была популярна в Новое время — самым известным из её сторонников был внёсший большой вклад в изучение света Исаак Ньютон. Однако в XIX веке были сформулированы принцип Гюйгенса — Френеля и затем уравнения Максвелла, прекрасно описывавшие свет как волну, состоящую из колебаний электромагнитного поля. Взаимодействие электромагнитой волны с веществом успешно описывалось классической теорией поля.

Казавшееся устоявшимся волновое описание света оказалось неполным, когда в 1901 году Планк получил формулу для спектра излучения абсолютно чёрного тела, а затем Эйнштейн объяснил фотоэффект, опираясь на предположение, что свет с определённой длиной волны излучается и поглощается исключительно определёнными порциями. Такая порция — квант света, позднее названный фотоном — переносит энергию, пропорциональную частоте световой волны с коэффициентом постоянная Планка. Таким образом, оказалось, что свет проявляет не только волновые, но и корпускулярные свойства.

Французский учёный Луи де Бройль (1892—1987), развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 году гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также волновыми свойствами.

Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики — энергия и импульс , а с другой стороны — волновые характеристики — частота и длина волны.

Более конкретное и корректное воплощение принцип корпускулярно-волнового дуализма получил в «волновой механике» Шрёдингера, которая затем превратилась в современную квантовую механику.

Вскоре Джордж Томсон и Клинтон Джозеф Дэвиссон с Лестером Джермером независимо обнаружили дифракцию электронов, дав тем самым убедительное подтверждение реальности волновых свойств электрона и правильности квантовой механики.

Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 году советскому физику В. А. Фабриканту. Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других, возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов в десятки миллионов раз более интенсивных.

Трактовку корпускулярно-волнового дуализма в русле квантовой механики дал физик В. А. Фок (1898—1974)[3]:

«Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна — частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно.»

Ричард Фейнман в ходе построения квантовой теории поля развил общепризнанную сейчас формулировку через интегралы по траекториям, которая не требует использования классических понятий «частицы» или «волны» для описания поведения квантовых объектов[8].

Корпускулярно-волновой дуализм света[править | править код]

Как классический пример применения принципа корпускулярно-волнового дуализма, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства классических электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла[9].

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году[10]. Корпускулярные свойства света проявляются в закономерностях равновесного теплового излучения, при фотоэффекте и в эффекте Комптона. Фотон ведёт себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решётке — кристаллической решётке твёрдого тела.

Волновое поведение крупных объектов[править | править код]

Волновое поведение проявляют не только элементарные частицы и нуклоны, но и более крупные объекты — молекулы. В 1999 году впервые наблюдалась дифракция фуллеренов[11]. В 2013 году удалось добиться дифракции молекул массой более 10000 а.е.м., состоящих более чем из 800 атомов каждая[12].

Тем не менее, нет полной уверенности, могут ли в принципе проявлять волновое поведение объекты с массой, превышающей планковскую[13].

См. также[править | править код]

Примечания[править | править код]

  1. «Дуализм» — то же, что двойственность; слово «корпускула» означает «частица» и вне контекста корпускулярно-волнового дуализма практически не используется.
  2. Герштейн С. С. Корпускулярно-волновой дуализм // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 464—465. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  3. 1 2 3 Фок, В. А. Об интерпретации квантовой механики / В. А. Фок // Успехи физических наук. –– 1957. –– Т. 62, № 8. С. 466
  4. 1 2 Широков Ю. М., Юдин Н. П. Ядерная физика. — М.: Наука, 1972. — С. 17-18
  5. Гальцов Д. В. Корпускулярно-волновой дуализм // Физический энциклопедический словарь. — под ред. А. М. Прохорова — М., Большая Российская энциклопедия, 2003. — ISBN 5-85270-306-0. — Тираж 10000 экз. — с. 312
  6. А. С. Давыдов. §1. Введение. §2. Волновая функция свободно движущейся частицы // Квантовая механика. — Изд. 2-е. — Наука, 1973.
  7. Волны де Бройля — статья из Физической энциклопедии
  8. Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям. — М., 1968. — 384 с.
  9. Taylor, G. I. (1909). “Interference fringes with feeble light”. Proceedings of the Cambridge Philosophical Society. 15: 114—115.
  10. Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences
  11. Markus Arndt, Olaf Nairz, Julian Vos-Andreae, Claudia Keller, Gerbrand van der Zouw & Anton Zeilinger (14 October 1999). “Wave–particle duality of C60. Nature. 401 (6754): 680—682. Bibcode:1999Natur.401..680A. DOI:10.1038/44348. PMID 18494170.
  12. Sandra Eibenberger, Stefan Gerlich, Markus Arndt, Marcel Mayor and Jens Tüxen (2013). “Matter–wave interference of particles selected from a molecular library with masses exceeding 10 000 amu”. Physical Chemistry Chemical Physics. 15 (35): 14696—14700. arXiv:1310.8343. Bibcode:2013PCCP...1514696E. DOI:10.1039/c3cp51500a. PMID 23900710.
  13. Peter Gabriel Bergmann, The Riddle of Gravitation, Courier Dover Publications, 1993 ISBN 0-486-27378-4

Литература[править | править код]

  • Луи де Бройль. Революция в физике (Новая физика и кванты). — 2-е изд. — М: Атомиздат, 1965. — 232 с.
  • Сычёв В. В. Сложные термодинамические системы. — 5-е изд., перераб. и доп.. — М.: Издательский дом МЭИ, 2009. — 296 с. — ISBN 978-5-383-00418-0.