Аналоговый компьютер

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Пневматический компьютер»)
Перейти к: навигация, поиск

Ана́логовый компьютер — аналоговая вычислительная машина (АВМ), которая представляет числовые данные при помощи аналоговых физических переменных (скорость, длина, напряжение, ток, давление), в чём и состоит его главное отличие от цифрового компьютера.

История[править | править вики-текст]

Копия механического калькулятора Лейбница в Немецком музее

Примечание: для сравнения указаны отдельные этапы развития цифровых вычислительных устройств.

Одним из самых древних аналоговых приборов считается антикитерский механизм — механическое устройство, обнаруженное в 1902 году на затонувшем древнем судне недалеко от греческого острова Антикитера. Датируется приблизительно 100 годом до н. э. (возможно, до 150 года до н. э.). Хранится в Национальном археологическом музее в Афинах.

Астрологи и астрономы пользовались аналоговым прибором астролябия с четвёртого века до нашей эры вплоть до девятнадцатого века нашей эры. Этот прибор использовался для определения положения звезд на небе и вычисления продолжительности дня и ночи. Современным потомком астролябии является планисфера — подвижная карта звёздного неба, используемая в учебных целях.

  • 1622 год, английский математик-любитель Уильям Отред разработал первый вариант логарифмической линейки, устройство которое можно считать первым аналоговым вычислительным прибором.
  • 1642 год — для сравнения: Блез Паскаль изобрёл «паскалину».
  • 1674 год — создана машина Морленда[1]
  • 1814 год, учёный Дж. Герман (Англия) создал планиметр — аналоговое устройство, которое предназначено для нахождения площади, ограниченной замкнутой кривой на плоскости.
  • 1878 год, польский математик Абданк-Абаканович разработал теорию интерграфа — некоего аналогового интегрирующего устройства, позволяющего получить интеграл от произвольной функции, изображённой на плоском графике.
  • 1904 год, российский инженер А. Н. Крылов изобрел первую механическую вычислительную машину, решающую дифференциальные уравнения (применялась при проектировании кораблей).
  • 1912 год — создана машина для интегрирования обыкновенных дифференциальных уравнений по проекту российского учёного А. Н. Крылова.
  • 1930 год — Ванневар Буш (США) создал механическую интегрирующую машину, применяющийся при расчёте траектории стрельбы корабельных орудий. (в 1942 году — создана её электромеханическая версия).[2]
  • 1935 год, СССР — выпуск первой советской электродинамической счётно-аналитической машины САМ (модель Т-1). Разработаны механический интегратор и электрический расчётный стол для определения стационарных режимов энергетических систем[источник не указан 1449 дней].
  • 1938 год — для сравнения: немецкий инженер Конрад Цузе вскоре после окончания в 1935 году Берлинского политехнического института построил свою первую машину, названную Z1. Это была полностью механическая программируемая цифровая машина.
  • 1942—1944 годы, США — операционный усилитель постоянного тока, имеющий достаточно высокий коэффициент усиления, что дало возможность конструировать аналоговые компьютеры без движущихся частей, на постоянном токе.
  • 1945—1946 годы, СССР — под руководством Л. И. Гутенмахера изобретены первые электронные аналоговые машины с повторением решения.
  • 1949 год, СССР — изобретён ряд АВМ на постоянном токе, что положило начало развитию аналоговой вычислительной техники в СССР.
  • 1958 год, Фрэнк Розенблатт разработал первый нейрокомпьютер-перцептрон Марк-1, который не является полностью аналоговым, а скорее относится к гибридным системам.[3]
  • 1960-е годы, аналоговые компьютеры являлись повседневным инструментом ученых для решения множества специфических задач в различных областях науки. В СССР расцвет электронных аналоговых вычислительных машин с их серийным выпуском пришёлся на 1960—1970-е годы.

Принцип действия[править | править вики-текст]

Польская АВМ «ELWAT»
Наборное поле АВМ ELWAT
Электронный аналоговый компьютер MOHAI, построенный около 1953 года компанией Боинг
MOHAI вблизи

Представлением числа в механических аналоговых компьютерах служит, например, количество поворотов шестерёнок механизма. В электрических — используются различия в напряжении. Они могут выполнять такие операции, как сложение, вычитание, умножение, деление, дифференцирование, интегрирование и инвертирование.

При работе аналоговый компьютер имитирует процесс вычисления, при этом характеристики, представляющие цифровые данные, в ходе времени постоянно меняются.

Результатом работы аналогового компьютера являются либо графики, изображённые на бумаге или на экране осциллографа, либо электрический сигнал, который используется для контроля процесса или работы механизма.

Эти компьютеры идеально[4] приспособлены для осуществления автоматического контроля над производственными процессами, потому что они моментально[4] реагируют на различные изменения во входных данных. Такого рода компьютеры широко используются в научных исследованиях. Например, в таких науках, в которых недорогие электрические или механические устройства способны имитировать изучаемые ситуации.

В ряде случаев с помощью аналоговых компьютеров возможно решать задачи, меньше заботясь о точности вычислений, чем при написании программы для цифровой ЭВМ. Например, для электронных аналоговых компьютеров без проблем реализуются задачи, требующие решения дифференциальных уравнений, интегрирования или дифференцирования. Для каждой из этих операций применяются специализированные схемы и узлы, обычно с применением операционных усилителей. Также интегрирование легко реализуется и на гидравлических аналоговых машинах.

Базовые элементы[править | править вики-текст]

Все функциональные блоки аналоговых вычислительных машин можно разделить на ряд групп:

  1. линейные — выполняют такие математические операции как интегрирование, суммирование, перемена знака, умножение на константу.
  2. нелинейные (функциональные преобразователи) — соответствуют нелинейной зависимости функции от нескольких переменных.
  3. логические — устройства непрерывной, дискретной логики, релейные переключающие схемы. Вместе эти устройства образуют устройство параллельной логики.

Универсальные АВМ как правило содержат в своем составе:

  • источник питания
  • контрольно-измерительную аппаратуру
  • управляющее устройство
  • наборное поле
  • блоки суммирования (сумматор)
  • блоки интегрирования (интегратор)
  • блоки дифференцирования (дифференциатор)
  • множительно-делительное устройство
  • блоки нелинейности (функциональный преобразователь)

также используются:

  • потенциометр функциональный
  • блок переменных коэффициентов
  • вычислитель индукционный
  • тахогенератор
Схема масштабного звена, он же инвертор при k=1
  • масштабное звено — аналоговый функциональный блок в АВМ структурного типа, в котором выходная величина y(t) и входная величина x(t) связаны зависимостью: y(t)=-kx(t) Применяется когда в АВМ при реализации структурной схемы модели необходимо произвести умножение на постоянный коэффициент k. В качестве звена масштабирования может применяться блок суммирования, в котором k_1\neq 1 и k_i=0, i=2, ... n, а напряжение на выходе определяется зависимостью:
U_{out}=-{\frac{R_1}{R}}U_{in}(t)=-k_1U_{in}(t).

Запоминающее устройство[править | править вики-текст]

  • Ёмкостные запоминающие устройства — динамические запоминающие устройства, основанная на свойстве конденсаторов хранить поданное на него напряжение. Ячейка ёмкостного ЗУ формируется на обычном интеграторе с различными коммутаторами. Иногда в интегратор для уменьшения времени процесса запоминания вводится операционный усилитель — повторитель. Время хранения информации в таких устройствах ограничено.
  • Делитель напряжения — электромеханическое запоминающее устройство в которых запоминаемым величинам соответствуют углы поворота реостатов. Подобные устройства могут неограниченное время хранить информацию.
  • Запоминающая пара — устройство, формирующее задержанную во времени последовательность выбранных уровней входного сигнала. В качестве запоминающей пары часто применяют каскадно соединённые операционные усилители, один из которых работает в режиме отслеживания входного сигнала, а другой в режиме хранения.
  • Запоминающее устройство на ферритовых сердечниках — основано на свойстве ферромагнетиков сохранять намагниченность. Ячейки таких ЗУ выполняются на ферритовых сердечниках либо на трансфлюксорах и тороидальных сердечниках. Использование трансфлюксоров и тороидальных сердечников уменьшает погрешности, одновременно снижая быстродействие.

Характеристики[править | править вики-текст]

Добротность АВМ — обобщённая характеристика аналоговой вычислительной машины, вычисляемая по формуле:

d={E_{max}-E_{min}\over E_{min}}\approx {E_{max}\over E_{min}},

где E_{max} — максимально возможное значение машинной переменной, E_{min} — нижний предел возможного значения машинной переменной. Пределы, как правило, определяются экспериментально. Числовое значение E_{min} зависит от уровня помех, ошибок аналоговых функциональных блоков, точности применяемой измерительной аппаратуры. Добротность мощных АВМ превышает d=10^3.[4]

Классификация[править | править вики-текст]

Аналоговая ЭВМ «Newmark», 1960 года выпуска. Состоит из пяти блоков, использовалась для вычисления дифференциальных уравнений. Сейчас находится в Кембриджском технологическом музее

Все АВМ можно разделить на две основных группы:

  • Специализированные — предназначены для решения заданного узкого класса задач (или одной задачи);
  • Универсальные — предназначены для решения широкого спектра задач.

В зависимости от типа рабочего тела[править | править вики-текст]

АВМ механическая[править | править вики-текст]

Аналоговая вычислительная машина, в которой машинные переменные воспроизводятся механическими перемещениями. При решении задач на АВМ данного типа необходимо, кроме масштабирования переменных, производить силовой расчет конструкции и расчет мертвых ходов. Достоинствами механических АВМ являются высокая надежность и обратимость, позволяющая воспроизводить прямые и обратные математические операции. Недостатки АВМ такого типа — высокая стоимость, сложность изготовления, большие габариты и вес, а также низкий коэффициент эффективности использования отдельных вычислительных блоков. Механические АВМ применяют при построении высоконадежных вычислительных устройств.[4]

Общее название потоковых (пневматических и гидравлических) конструкций, предназначенных для вычислений и т. п. задач — пневмоника (en:Fluidics).[5]

АВМ пневматическая[править | править вики-текст]

Аналоговая вычислительная машина, в которой переменные представлены в виде величин давления воздуха (газа) в различных точках специально построенной сети. Элементами такой АВМ являются дроссели, емкости и мембраны. Дроссели играют роль сопротивлений, могут быть постоянными, переменными, нелинейными и регулируемыми. Пневматические емкости представляют из себя глухие или проточные камеры, давление в которых вследствие сжимаемости воздуха растет по мере их наполнения. Мембраны используются для преобразования давления воздуха. В состав пневматической АВМ могут входить усилители, сумматоры, интеграторы, функциональные преобразователи и множительные устройства, которые соединяются между собой при помощи штуцеров и шлангов. Пневматические АВМ уступают в быстродействии электронным. В среднем подвижные элементы такой АВМ имеют время срабатывания около десятой доли миллисекунды, следовательно, они могут пропускать частоты порядка 10 кГц. Такие АВМ отличаются значительными погрешностями, поэтому применяются там, где нельзя применять другие типы вычислительных машин: во взрывоопасных средах, в средах с высокими температурами, в автоматических системах химического производства. Из-за низкой стоимости и высокой надежности такие АВМ также применяют в металлургии, теплоэнергетике, газовой промышленности и т. п.[4]

В 1960-х годах разрабатывались для получения средства дискретных вычислений с высокой радиационной стойкостью. Были разработаны элементы, выполняющие основные логические операции и элементы памяти без механических подвижных элементов.

Такие элементы очень долговечны, поскольку в них практически отсутствуют подвижные части, и, как следствие, нечему ломаться. В случае засорения каналов логические матрицы легко разбираются и промываются. Работает пневмокомпьютер от промышленной пневмосети. Логические матрицы легко штампуются на термопласт-автоматах из пластика. Для особых случаев матрица может быть изготовлена из тугоплавкой керамики, отлита из чугуна или другого сплава.

Сейчас пневмокомпьютеры используются в отраслях промышленности, где требуется повышенная вибрационная стойкость, работоспособность в очень широком диапазоне температур или требуется управление пневматическими силовыми устройствами. В последнем случае устраняется необходимость в преобразователях электрического сигнала в перемещение (электро-пневмопреобразователь + позиционер). Это — роботы и автоматика, работающие в металлургии, в горнорудной промышленности. Известны случаи управления элементами авиационных двигателей, автоматикой ракетных систем, силовыми приводами вертолетов и самолетов.

Существует также целая категория производств, агрегатов и установок, где применение электричества, даже самых низких напряжений, очень нежелательно. Это химия органических соединений, нефтеперегонные заводы, подземная добыча угля и руды. Они широко используют пневматическую автоматику.

Гидравлические АВМ[править | править вики-текст]

Профессор В. С. Лукьянов в 1934 году предложил принцип гидравлических аналогий и в 1936 году реализовал первый «гидравлический интегратор» — устройство, предназначенное для решения дифференциальных уравнений, действие которого основано на протекании воды. В дальнейшем подобные устройства применялись в десятках организаций и использовались до середины 1980-х годов XX века.[6][7]

Первые экземпляры были скорее экспериментальными, были сделаны из жести и стеклянных трубок, и каждый мог использоваться для решения только одной задачи.

В 1941 году Лукьяновым был создан гидравлический интегратор модульной конструкции, который позволял собрать машину для решения разнообразных задач.

В 1949—1955 годах в институте НИИСЧЕТМАШ был разработан интегратор в виде стандартных унифицированных блоков. В 1955 году на Рязанском заводе счетно-аналитических машин начался серийный выпуск интеграторов с заводской маркой «ИГЛ» (интегратор гидравлический системы Лукьянова).

В настоящее время два гидроинтегратора Лукьянова хранятся в Политехническом музее.[6]

АВМ электронная[править | править вики-текст]

АВМ с наборными полями

Аналоговая вычислительная машина, в которой переменные представляются электрическим напряжением постоянного тока. Получили широкое распространение в связи с высокой надежностью, быстродействием, удобством управления и получения результатов.

Комбинированные АВМ[править | править вики-текст]

Страница инструкции с описанием точного аналогового механизма прицеливания американского бомбового прицела «Norden» для бомбардировщиков времен Второй мировой войны
Аналоговый бомбовый прицел «Norden» в сборе
US Navy Mk III Torpedo Data Computer, аналоговый компьютер для управления торпедным огнём. Использовался на американских субмаринах во время Второй мировой войны
Электромеханические АВМ[править | править вики-текст]

Примером комбинированной АВМ может служить электромеханические АВМ, в которых машинными переменными являются механические (обычно угол поворота) и электрические (обычно напряжение) величины. Специфическими для данного типа АВМ являются вращающиеся трансформаторы и тахогенераторы. АВМ данного типа менее надёжны, чем механические, из-за наличия скользящих контактов.

По конструктивным признакам[править | править вики-текст]

АВМ матричного типа[править | править вики-текст]

АВМ матричного типа (групповая аналоговая машина) — аналоговая машина, в которой отдельные простейшие вычислительные блоки жестко соединяются в одинаковые типовые группы. В основном используется для моделирования дифференциальных уравнений. Задачу при этом предварительно необходимо свести к равносильной ей системе дифференциальных уравнений первого порядка. Каждая типовая группа вычислительных элементов используется для моделирования одного уравнения. АВМ матричного типа нуждается в определенном процессе масштабирования, при котором значения коэффициентов одного столбца матрицы должны иметь одинаковый порядок. Набор задач на таких АВМ сводится к установке коэффициентов и начальных условий. Недостатком АВМ этого типа является низкая эффективность использования отдельных блоков. К этому типу АВМ в основном относятся механические АВМ.[4]

АВМ структурного типа[править | править вики-текст]

Структурная операционная аналоговая машина, в которой простейшие вычислительные блоки соединяются между собой в соответствии с математическими операциями решаемого уравнения. Используются для математического моделирования.

По способу функционирования[править | править вики-текст]

Быстрая АВМ[править | править вики-текст]

АВМ с периодизацией, с повторением решения — аналоговая вычислительная машина, в которой этапы решения задач автоматически повторяются с помощью системы коммутации. Предел частоты повторений определяется частотными характеристиками решающих элементов. Вычислительные элементы АВМ однократного действия (операционные усилители, функциональные преобразователи и т. п.) пригодны для использования в АВМ с периодизацией. В таких АВМ используются интеграторы с малой постоянной времени. Устройство быстродействующих АВМ более сложное, чем у АВМ однократного действия, так как используются специальные схемы для разряда конденсаторов в конце цикла и схемы для автоматического ввода начальных значений в начале каждого вычислительного цикла. Самое большее преимущество АВМ такого типа — возможность наблюдать изменение результата в зависимости от параметров в реальном времени. Быстродействующие АВМ используются для приблизительного определения передаточной функции физической системы по семейству её переходных характеристик, для решения краевых задач, вычисления интеграла Фурье и корреляционного анализа.

Медленная АВМ[править | править вики-текст]

Аналоговая вычислительная машина однократного действия, в которой используются интеграторы с относительно большими постоянными времени. Решение типовых задач на таких АВМ длится от нескольких секунд до нескольких минут. При этом результат изменения параметров может быть зафиксирован только после завершения всех вычислительных циклов.[4]

Итеративная АВМ[править | править вики-текст]

Аналоговая вычислительная машина, осуществляющая процесс решения задачи итерационным способом в течение определенного числа итераций. Специфика такой АВМ позволяет управлять ходом вычислений в заданные моменты времени. Например, возможно обрабатывать значения с выходов интеграторов и пересылать информацию из одного такта в другой в зависимости от условий.[4]

Применение[править | править вики-текст]

Индикатор кулачкового аналогового компьютера

Аналоговые электронные компьютеры основываются на задании физических характеристик их составляющих. Обычно это делается методом включения-исключения некоторых элементов из цепей, которые соединяют эти элементы проводами, и изменением параметров переменных сопротивлений, емкостей и индуктивностей в цепях.

Автомобильная автоматическая трансмиссия является примером гидромеханического аналогового компьютера, в котором при изменении вращающего момента жидкость в гидроприводе меняет давление, что позволяет получить необходимый конечный коэффициент передачи.

Помимо технических применений (автоматические трансмиссии, музыкальные синтезаторы), аналоговые компьютеры используются для решения специфических вычислительных задач практического характера. Например, кулачковый механический аналоговый компьютер, изображённый на фото, применялся в паровозостроении для аппроксимации кривых 4 порядка с помощью преобразований Фурье.

Военная техника[править | править вики-текст]

В военной технике исторически выработалось ещё одно название аналоговых вычислительных устройств для управления огнем артиллерии, высотного бомбометания и других военных задач, требующих сложных вычислений — это счётно-решающий прибор. Примером может служить прибор управления зенитным огнём.

Аналоговая техника интересна для военных двумя чертами: она крайне быстра, и в условиях помех работоспособность машины восстановится, как только помеха пропадёт.

Современная техника[править | править вики-текст]

Сейчас аналоговые компьютеры уступили свое место цифровым технологиям, но ещё применяются там, где необходима повышенная точность результатов[уточнить], особенно учитывая ограничения представления чисел с плавающей запятой в двоичной системе.

Представители[править | править вики-текст]

Польский электронный аналоговый компьютер «AKAT-1»

Среди аналоговых вычислительных устройств можно выделить:

«Итератор»[править | править вики-текст]

«Итера́тор» — специализированная АВМ, предназначенная для решения линейных краевых задач систем линейных дифференциальных уравнений. Разработана в Институте кибернетики АН УССР в 1962 году.

«Итератор» решает краевую задачу итерационным способом Ньютона, сводящим её к серии задач с начальными условиями. Алгоритм заключается в определении матрицы первых производных по компонентам вектора начальных условий и автоматического поиска решения краевой задачи с использованием этой матрицы. Сходимость итерационного процесса благодаря примененному методу обеспечивается за три-четыре итерации.

Кроме систем дифференциальных уравнений с постоянными и переменными коэффициентами 2n-го порядка с линейными краевыми условиями, «Итератор» решает системы линейных алгебраических уравнений n-го порядка с произвольной матрицей коэффициентов.

Характеристики[править | править вики-текст]

  • максимальный порядок решаемой системы дифференциальных уравнений — 8;
  • максимальное число точек в интервале интегрирования, входящих в краевые условия — 3;
  • максимальная погрешность — до 3 %;
  • число операционных усилителей — 21;
  • потребляемая мощность — 1кВ·A.

«МН»[править | править вики-текст]

Семейство аналоговых вычислительных машин. Название является аббревиатурой слов «модель нелинейная». Были предназначены для решения задач Коши для обыкновенных дифференциальных уравнений. Наиболее совершенным представителем машин этого ряда была машина «МН-18» — АВМ средней мощности, предназначенная для решения методами математического моделирования сложных динамических систем, описываемых дифференциальными уравнениями до десятого порядка в составе аналого-цифрового вычислительного комплекса или самостоятельно. Схема управления позволяет производить одновременно и разделенный запуск интеграторов по группам, однократное решение задач и решение задач с повторением. Допустимо объединение до четырёх машин МН-18 в единый комплекс.

Основные технические характеристики[править | править вики-текст]

  • количество операционных усилителей — 50;
  • максимальный порядок решаемых уравнений — 10;
  • диапазон изменения применяемых величин ± 50 В;
  • время интегрирования — 1000 с;
  • потребляемая мощность — 0,5 кВ × А.

Интересные факты[править | править вики-текст]

Мозг человека — самое мощное и эффективное «аналоговое устройство» из существующих. И хотя передача нервных импульсов происходит за счет дискретных сигналов, информация в нервной системе не представлена в цифровом виде. Нейрокомпьютеры — аналоговые, гибридные компьютеры (модели реализованные на цифровых ЭВМ), построенные на элементах, которые работают аналогично клеткам мозга.[8]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. http://schools.keldysh.ru/sch444/museum/1_17-17.htm 1674 год
  2. Обучающий фильм 1953 года «Fire Control Computers» (Компьютеры наведения огня): Часть 1 (англ.), Часть 2 (англ.)
  3. Perceptrons
  4. 1 2 3 4 5 6 7 8 Словарь по кибернетике / Под ред. академика В. С. Михалевича. — 2-е изд. — К.: Главная редакция Украинской Советской Энциклопедии имени М. П. Бажана, 1989. — 751 с. — (С48). — 50 000 экз. — ISBN 5-88500-008-5
  5. Залманзон Л. А. Теория элементов пневмоники.. — М.: Наука, 1969. — 177 с.
  6. 1 2 Соловьева О. В. Гидрогенераторы В. С. Лукьянова(недоступная ссылка — история). Политехнический музей. Архивировано из первоисточника 28 марта 2012.
  7. Соловьева О. Водяные вычислительные машины // «Наука и Жизнь» : Журнал. — М, 2000. — № 4.
  8. Горбань А. Н. Нейрокомпьютер, или Аналоговый ренессанс, Мир ПК, 1994, № 10, 126—130.

Ссылки[править | править вики-текст]