Теория ожидаемой полезности

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В экономике, теории игр, теории принятия решений теория ожидаемой полезности — альтернатива математическому ожиданию, формула, которая может использоваться рациональным игроком при принятии решений.

Смысл гипотезы[править | править вики-текст]

Рациональный игрок при выборе решения пытается максимизировать некоторую величину (благо); кажется естественным в качестве такой величины использовать математическое ожидание блага, появляющегося в результате избранного решения. Однако, опыт показывает, что в реальной жизни многие участники лотерей выбирают решение с меньшим математическим ожиданием, но и с меньшим риском. Например, поставленные перед выбором получить тысячу рублей с вероятностью 0,2 % (математическое ожидание — 2 рубля) или получить один рубль с вероятностью 100 % (математическое ожидание — 1 рубль), многие люди предпочтут гарантированную выплату, несмотря на её меньшее математическое ожидание. Для описания такого поведения и была придумана формула ожидаемой полезности,

Виднейшие представители[править | править вики-текст]

В 1944 году вышла монография Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение», в которой авторы обобщили и развили результаты теории игр и предложили новый метод для оценки полезности благ.

Аксиоматика теории ожидаемой полезности[править | править вики-текст]

Поведение рационального игрока в теории ожидаемой полезности основывается на четырёх аксиомах:

  1. Аксиома полноты. Для любых , должно выполняться соотношение , или . То есть, при выборе между А и B игрок должен или предпочитать вариант А, или предпочитать вариант B, или ему должно быть всё равно.
  2. Аксиома транзитивности. Если и , то . То есть, если игроку A кажется лучше, чем B, а B — лучше, чем C, то для него A будет лучше, чем C.
  3. Аксиома независимости. Предположим, что и , тогда для любого C . То есть, если для игрока A лучше, чем B, то он предпочтёт замену B на А (с той же вероятностью p), независимо от третьей альтернативы C. Из четырёх аксиом эта — наиболее спорная.
  4. Аксиома непрерывности. Предположим, что , тогда можно представить в виде , где . То есть, если игроку вариант A нравится больше, чем B, а B — больше, чем C, то существует такая вероятность p, что игроку будет всё равно, получит ли он B гарантированно или положится на случай, который предоставит ему либо более полезный, чем B, вариант A с негарантированной вероятностью p, либо менее полезный C. В применении к примеру из начала этой статьи, при некоторой вероятности p игроку будет всё равно, получить ли ему гарантированную выплату суммы B (1 рубль) или сыграть в лотерею , в которой он может выиграть А (1000 рублей) с вероятностью p, но может и ничего не выиграть (C = 0 рублей).

Выводы из теории ожидаемой полезности[править | править вики-текст]

В предположении, что аксиомы выполняются, а благо аддитивное, предпочтения рационального игрока будут определяться сравнительно простой формулой.

Функционал риска является линейным, таким образом полезность фон Неймана — Моргенштерна для благ можно представить в виде . Причем

Литература[править | править вики-текст]

  • Дж. фон Нейман, О. Моргенштерн. Теория игр и экономическое поведение». — М.: «Наука», 1970. — 707 с.

См. также[править | править вики-текст]