Уравнение Пуассона

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Уравне́ние Пуассо́наэллиптическое дифференциальное уравнение в частных производных, которое описывает

Оно названо в честь знаменитого французского физика и математика Симеона Дени Пуассона.

Это уравнение имеет вид:

где оператор Лапласа, или лапласиан, а вещественная или комплексная функция на некотором многообразии.

В трёхмерной декартовой системе координат уравнение принимает форму:

В декартовой системе координат оператор Лапласа записывается в форме и уравнение Пуассона принимает вид:

Если f стремится к нулю, то уравнение Пуассона превращается в уравнение Лапласа (уравнение Лапласа — частный случай уравнения Пуассона):

Уравнение Пуассона может быть решено с использованием функции Грина; см., например, статью экранированное уравнение Пуассона. Есть различные методы для получения численных решений. Например, используется итерационный алгоритм — «релаксационный метод».

Электростатика[править | править вики-текст]

Уравнение Пуассона является одним из важнейших уравнений электростатики. Нахождение φ для данного f — важная практическая задача, поскольку это обычный путь для нахождения электростатического потенциала для данного распределения заряда. В единицах системы СИ:

где — электростатический потенциал (в вольтах), — объёмная плотность зарядакулонах на кубический метр), а диэлектрическая проницаемость вакуумафарадах на метр).

В единицах системы СГС:

В области пространства, где нет непарной плотности заряда, имеем:

и уравнение для потенциала превращается в уравнение Лапласа:

Уравнение Пуассона выводится из закона Гаусса и определения статического потенциала:

Потенциал точечного заряда[править | править вики-текст]

Потенциал, источником которого служит точечный заряд,

- то есть кулоновский потенциал - есть по сути (а строго говоря при q = 1) функция Грина

для уравнения Пуассона,

то есть решение уравнения

где - обозначение дельта-функции Дирака, а произведение трех дельта-функций есть трехмерная дельта-функция, а

В связи с этим ясно, что решение уравнения Пуассона с произвольной правой частью может быть записано как

  • Здесь мы имеем в виду наиболее простой случай «без граничных условий», когда принимается, что на бесконечности решение должно стремиться к нулю. Рассмотрение более общего случая произвольных граничных условий и вообще более подробное изложение - см. в статье Функция Грина.
  • Физический смысл последней формулы - применение принципа суперпозиции (что возможно, поскольку уравнение Пуассона линейно) и нахождение потенциала как суммы потенциалов точечных зарядов .

Потенциал гауссовой объёмной плотности заряда[править | править вики-текст]

Если мы имеем объёмную сферически симметричную плотность гауссового распределения заряда :

где Q — общий заряд, тогда решение Φ (r) уравнения Пуассона:

даётся:

где erf(x) — функция ошибок. Это решение может быть проверено напрямую вычислением . Заметьте, что для r, много больших, чем σ, erf(x) приближается к единице, и потенциал Φ (r) приближается к потенциалу точечного заряда , как и можно было ожидать.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]

  • Poisson Equation at EqWorld: The World of Mathematical Equations.
  • L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998. ISBN 0-8218-0772-2
  • A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9