Квадратный корень

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Nuvola apps edu mathematics blue-p.svg

Квадра́тный ко́рень из числа (корень 2-й степени) — число , дающее при возведении в квадрат[1]: Равносильное определение: квадратный корень из числа  — решение уравнения Операция вычисления значения квадратного корня из числа называется «извлечением квадратного корня» из этого числа.

Наиболее часто под и подразумеваются вещественные числа, но существуют и обобщения [⇨] для комплексных чисел и других математических объектов, например матриц и операторов.

У каждого положительного вещественного числа существуют два противоположных по знаку квадратных корня. Например, квадратными корнями из числа 9 являются и у обоих этих чисел квадраты совпадают и равны 9. Это затрудняет работу с корнями. Чтобы обеспечить однозначность, вводится понятие арифметического корня, значение которого при всегда неотрицательно (а на положительных положительно); арифметический корень из числа обозначается с помощью знака корня (радикала)[2][3]: .

Пример для вещественных чисел: потому что

Если требуется учесть двузначность корня, перед радикалом ставится знак плюс-минус[2]; например, так делается в формуле решения квадратного уравнения :

История[править | править код]

Вавилонская глиняная табличка YBC 7289 с аннотациями. Диагональ отображает приближение квадратного корня из 2 в четырех шестидесятеричных цифрах, 1 24 51 10, что соответствует примерно шести десятичным знакам. 1 + 24/60 + 51/60 2 + 10/60 3 = 1,41421296

Вавилонская глиняная табличка YBC 7289 из вавилонской коллекции Йельского университета была создана между 1800 и 1600 годами до н. э. и демонстрирует и соответственно как (в шестидесятиричной системе счисления) 1;24,51,10 и 0;42,25,35 на квадрате, пересечённом двумя диагоналями[4]. (1;24,51,10) по основанию 60 соответствует 1,41421296, что является правильным значением с точностью до 5 десятичных знаков (1,41421356 ...).

Папирус Ахмеса — копия, датируемая 1550 г. до н. э., более раннего Берлинского папируса, показывает, как египтяне извлекали квадратный корень с помощью метода обратной пропорции[5].

В китайской математической работе «Письма о расчётах», написанной между 202 г. до н. э. и 186 г. до н. э. во время ранней династии Хань, квадратный корень аппроксимируется методом «избытка и недостатка», который гласит: «... объединить избыток и недостаток как делитель; (взяв) числитель дефицита, умноженный на знаменатель избытка, и числитель избытка, умноженный на знаменатель дефицита, объединить их в качестве делимого"[6].

Символ «√» для квадратного корня был впервые использован в печати в 1525 году, Кристофом Рудольфом в своём учебнике алгебры «Косс»[7].

Рациональные числа[править | править код]

При рациональных уравнение не всегда разрешимо в рациональных числах. Более того, такое уравнение, даже при положительном , разрешимо в рациональных числах тогда и только тогда, когда и числитель и знаменатель числа , представленного в виде несократимой дроби, являются квадратными числами.

Непрерывная дробь для корня из рационального числа всегда является периодической (возможно с предпериодом), что позволяет, с одной стороны, легко вычислять хорошие рациональные приближения к рациональным числам с помощью линейных рекурсий, а с другой стороны ограничивает точность приближения: , где зависит от [8][9]. Верно и то, что любая периодическая цепная дробь является квадратичной иррациональностью.

Действительные (вещественные) числа[править | править код]

Для любого положительного числа существуют ровно два вещественных корня, которые равны по модулю и противоположны по знаку[10].

Неотрицательный квадратный корень из неотрицательного числа называется арифметическим квадратным корнем и обозначается с использованием знака радикала[3] .

Комплексные числа[править | править код]

Квадратных корней из любого ненулевого комплексного числа всегда ровно два, они противоположны по знаку. Для корней в комплексной области понятие арифметического корня не вводится, знак радикала обычно либо не используется, либо обозначает не функцию корня, а множество всех корней. В последнем случае, во избежание ошибок, знак радикала не должен использоваться в арифметических операциях. Распространённая ошибка:

(что, конечно, неверно)

Ошибка возникла из-за того, что неарифметический квадратный корень является многозначной функцией, и его нельзя использовать в арифметических действиях.

Для извлечения квадратного корня из комплексного числа удобно использовать экспоненциальную форму записи комплексного числа: если

,

то (см. Формула Муавра)

,

где корень из модуля понимается в смысле арифметического значения, а k может принимать значения k = 0 и k = 1, таким образом в итоге в ответе получаются два различных результата.

Существует и чисто алгебраическое представление для корня из ; оба значения корня имеют вид где:

Здесь sgn — функция «знак». Формула легко проверяется возведением в квадрат[11].

Пример: для квадратного корня из формулы дают два значения:

Квадратный корень как элементарная функция[править | править код]

График функции

Квадратный корень является элементарной функцией и частным случаем степенной функции с . Арифметический квадратный корень является гладким при в нуле же он непрерывен справа, но не дифференцируем[12].

Как функция комплексного переменного корень — двузначная функция, листы которой соединяются в нуле (см. подробнее Комплексный анализ).

Квадратный корень в элементарной геометрии[править | править код]

Для примера, 25 = 5, поскольку 25 = 5 ⋅ 5, или 52 (5 в "квадрате").

Квадратные корни тесно связаны с элементарной геометрией: если дан отрезок длины 1, то с помощью циркуля и линейки можно построить те и только те отрезки, длина которых записывается выражениями, содержащими целые числа, знаки четырёх действий арифметики, квадратные корни и ничего сверх того[13].

Квадратный корень в информатике[править | править код]

Во многих языках программирования функционального уровня (а также языках разметки типа LaTeX) функция квадратного корня обозначается как sqrt (от англ. square root «квадратный корень»).

Алгоритмы нахождения квадратного корня[править | править код]

Нахождение или вычисление квадратного корня заданного числа называется извлечением (квадратного) корня.

Разложение в ряд Тейлора[править | править код]

при .

Грубая оценка[править | править код]

Многие алгоритмы вычисления квадратных корней из положительного действительного числа S требуют некоторого начального значения. Если начальное значение слишком далеко от настоящего значения корня, вычисления замедляются. Поэтому полезно иметь грубую оценку, которая может быть очень неточна, но легко вычисляется. Если S ≥ 1, пусть D будет числом цифр S слева от десятичной запятой. Если S < 1, пусть D будет числом нулей, идущих подряд, справа от десятичной запятой, взятое со знаком минус. Тогда грубая оценка выглядит так:

Если D нечётно, D = 2n + 1, тогда используем
Если D чётно, D = 2n + 2, тогда используем

Два и шесть используются потому, что и

При работе в двоичной системе (как внутри компьютеров), следует использовать другую оценку (здесь D это число двоичных цифр).

Геометрическое извлечение квадратного корня[править | править код]

Построение для геометрического извлечения квадратного корня

Так как треугольники и подобны по признаку подобия треугольников по 2 равным углам, то откуда и

В частности, если , а , то [14].

Итерационный аналитический алгоритм[править | править код]

Данный способ был известен уже в Древнем Вавилоне. Он позволяет найти приближённое значение квадратного корня с любой точностью,

Последовательные приближения рассчитываются по формуле: тогда

Этот метод сходится очень быстро. Например, если для взять начальное приближение то получим:

В заключительном значении верны все приведённые цифры, кроме последней.

Столбиком[править | править код]

Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью. К недостаткам способа можно отнести увеличивающуюся сложность вычисления с увеличением количества найденных цифр.

Для ручного извлечения корня применяется запись, похожая на деление столбиком. Выписывается число, корень которого ищем. Справа от него будем постепенно получать цифры искомого корня. Пусть извлекается корень из числа N с конечным числом знаков после запятой. Для начала мысленно или метками разобьём число N на группы по две цифры слева и справа от десятичной точки. При необходимости группы дополняются нулями — целая часть дополняется слева, дробная справа. Так, 31234,567 можно представить как 03 12 34, 56 70. В отличие от деления, снос производится такими группами по 2 цифры.

  1. Записать число N (в примере — 69696) на листке.
  2. Найти , квадрат которого меньше или равен группе старших разрядов числа N (старшая группа — самая левая, не равная нулю), а квадрат больше группы старших разрядов числа. Записать найденное справа от N (это очередная цифра искомого корня). (На первом шаге примера , а ).
  3. Записать квадрат под старшей группой разрядов. Провести вычитание из старшей группы разрядов N выписанного квадрата числа и записать результат вычитания под ними.
  4. Слева от этого результата вычитания провести вертикальную черту и слева от черты записать число, равное уже найденным цифрам результата (мы их выписываем справа от N), умноженное на 20. Назовём это число . (На первом шаге примера это число просто есть , на втором ).
  5. Произвести снос следующей группы цифр, то есть дописать следующие две цифры числа N справа от результата вычитания. Назовем число, полученное соединением результата вычитания и очередной группы из двух цифр. (На первом шаге примера это число , на втором ). Если сносится первая группа после десятичной точки числа N, то нужно поставить точку справа от уже найденных цифр искомого корня.
  6. Теперь нужно найти такое , что меньше или равно , но больше, чем . Записать найденное справа от N как очередную цифру искомого корня. Вполне возможно, что окажется равным нулю. Это ничего не меняет — записываем 0 справа от уже найденных цифр корня. (На первом шаге примера это число 6, так как , но ) Если число найденных цифр уже удовлетворяет искомой точности, прекращаем процесс вычисления.
  7. Записать число под . Провести вычитание столбиком числа из и записать результат вычитания под ними. Перейти к шагу 4.

Наглядное описание алгоритма:

SquareRoot.png

Обобщения[править | править код]

Квадратные корни вводятся как решения уравнений вида и для других объектов: матриц[15][16], функций[17][18], операторов[19][20] и т. п. В качестве операции при этом могут использоваться достаточно произвольные мультипликативные операции — например, суперпозиция.

В алгебре применяется следующее формальное определение: Пусть группоид и . Элемент называется квадратным корнем из если .

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

На русском:

На английском:

Ссылки[править | править код]