Изопрен

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Изопрен[1]
Isoprene Structural Formulae V.1.svg
Isoprene-3d.png
Общие
Систематическое наименование
2-метилбутадиен-1,3
Традиционные названия изопрен
Хим. формула C₅H₈
Физические свойства
Плотность 0,681 г/см³
Поверхностное натяжение 18,22 мН/м
Динамическая вязкость 0,216 мПа·с
Термические свойства
Т. плав. –145,95 ℃
Т. кип. 34,059 ℃
Т. всп. –54 ℃
Т. свспл. 220 ℃
Пр. взрыв. 1—9,7 %
Кр. темп. 483,3 К
Кр. давл. 3,74 МПа
Кр. плотн. 0,247 г/см³ см³/моль
Мол. теплоёмк. 102,69 Дж/ (моль·К) (г), 151,07 Дж/(моль·К) (ж)
Энтальпия образования –75,75 кДж/моль (г), –49,36 кДж/моль (ж)
Энтальпия плавления 4,83 кДж/моль
Энтальпия кипения 26,3
Удельная теплота испарения 26,39 кДж/моль
Давление пара 60,7 кПа
Химические свойства
Растворимость в воде 0,38 г/л (20 °C)
Оптические свойства
Показатель преломления 1,42194
Классификация
Номер CAS 78-79-5
PubChem 6557
ChemSpider 6309
Номер EINECS 201-143-3
ChEBI 35194
C=C(C)C=C
1S/C5H8/c1-4-5(2)3/h4H,1-2H2,3H3
Безопасность
H-фразы H224, H341, H350, H412
P-фразы P201, P210, P273, P281, P308+P313
Пиктограммы СГС Пиктограмма "Пламя" согласованной на глобальном уровне системы классификации и маркировки химических веществ (СГС)Пиктограмма "Опасность для здоровья" согласованной на глобальном уровне системы классификации и маркировки химических веществ (СГС)
Приводятся данные для стандартных условий (25 ℃, 100 кПа), если не указано иное.

Изопрен (2-метилбутадиен-1,3) — ненасыщенный углеводород, принадлежащий к диеновому ряду, представляющий собой бесцветную летучую жидкость с характерным запахом. Является мономером натурального каучука, остаток его молекулы входит во множество других природных соединений — изопреноидов, терпеноидов и т. д.

Изопрен растворим во многих органических растворителях, например, с этиловым спиртом смешивается в произвольном соотношении. Плохо растворим в воде. При полимеризации образует изопреновые каучуки и гуттаперчи. Изопрен также вступает в различные реакции сополимеризации.

Основное применение в промышленности — синтез изопреновых каучуков, некоторых медицинских препаратов, душистых веществ.

Получение изопрена[править | править вики-текст]

Устаревшие методы[править | править вики-текст]

Изопрен был впервые получен Уильямсом в 1860 году путём пиролиза натурального каучука. Наиболее распространённым способом получения изопрена в лабораторных условиях было термическое разложение скипидарного масла в так называемой изопреновой лампе — специальном приборе с нагреваемой электрическим током спиралью. Во время Второй мировой войны в США изопрен получали пиролизом лимонена в промышленных масштабах. До окончания войны изопрен был слишком дорог для производства синтетического каучука, однако ситуация изменилась с появлением методов его получения из нефти, а также с развитием технологии его полимеризации[2].

Синтетические методы[править | править вики-текст]

Промышленные методы получения изопрена могут быть разделены на группы в зависимости от исходных реагентов для сборки пятиуглеродного скелета молекулы:

  • C1 + C4 → C5;
  • C2 + C3 → C5;
  • C3 + C3 → C6 → C5 + C1;
  • C4 + C4 → C8 → C5 + C3.

Основным блоком C4 для синтеза изопрена является изобутилен, к которому в кислой среде (серная кислота или ионообменные смолы) присоединяют формальдегид с образованием 4,4-диметил-1,3-диоксана с выходом 74—80 % (реакция Принса), который далее разлагают при нагревании (200—300 °C) в присутствии ортофосфорной кислоты, что даёт изопрен с выходом 43—46 %. Метод был предложен в 1938 году и стал известен, благодаря работам сотрудников Французского института нефти. Предпринимались попытки улучшения данного синтеза, связанные преимущественно с технологическими особенностями и использованием различных катализаторов. Существенной чертой метода является выделение формальдегида при разложении 1,3-диоксана и связанное с этим образование резины в установках по синтезу изопрена. Чтобы избежать подобных побочных процессов, предлагалось использовать различные химические аналоги формальдегида (метилаль, метилхлорметиловый эфир, диоксолан), а также генерировать его непосредственно при синтезе целевого продукта[3][4][5].

Синтез изопрена из изобутилена и формальдегида

Также в качестве блока C4 может использоваться бутен-2. Его гидроформилирование в присутствии родиевого катализатора приводит к 2-метилбутаналю, который затем подвергается каталитической дегидратации под действием фосфата магния-аммония, молекулярных сит либо цеолитов, что приводит к изопрену. Данный метод не был реализован на промышленных предприятиях[6].

Синтез изопрена из бутена-2

Синтез изопрена из блоков C2 и C3 был предложен Снампроджетти и использовался в Италии, давая 30 тыс. тонн изопрена в год. На первой стадии данного процесса происходит реакция между ацетоном и ацетиленом в присутствии KOH в жидком аммиаке при 10—40 °C и 20 бар. Продукт присоединения селективно гидрируется до алкена, после чего дегидратируется при 250—300°C на оксиде алюминия, давая изопрен. Общая селективность в расчёте на ацетон и ацетилен составляет 85 %. Метод позволяет получать очень чистый изопрен, однако такое производство является относительно затратным[7][5].

Синтез изопрена из ацетилена и ацетона

Промышленное получение изопрена путём димеризации пропилена, последующей изомеризации получаемого 2-метилпентена-1 в 2-метилпентен-2 и крекинга последнего в присутствии HBr с образованием метана и изопрена было воплощено на заводе в городе Бомонт (Техас), однако в 1975 году прекращено после пожара по причине роста цены на пропилен[7].

Синтез изопрена из пропилена

Интересным подходом к синтезу изопрена является метатезис бутена-2 с образованием пропилена и 2-метилбутена-2. Последний может быть дегидрирован различными известными способами. Недостаток данного подхода заключается в том, что поскольку в реакцию метатезиса могут вступать любые алкены, происходит образование разнообразных побочных продуктов. Особенно эта ситуация усугубляется при промышленных масштабах производства, когда в качестве исходного реагента используется более дешёвый технический бутен-2, содержащий примесь бутена-1[8].

Синтез изопрена по реакции метатезиса

Процессы дегидрирования[править | править вики-текст]

Реакции дегидрирования изопентана и изопентенов с образованием изопрена широко исследованы и напоминают аналогичные реакции получения бутадиена[9].

Одностадийный процесс дегидрирования изопентана под действием катализатора на основе Cr2O3/Al2O3 при 600 °C и 7 кПа даёт изопрен с выходом 52 %. Этот метод применялся в СССР. Дегидрирование изопентенов (метилбутенов) протекает под действием катализатора Shell (Fe2O3/K2CO3/Cr2O3) при 600 °C с выходом 85 %. Исходные углеводороды можно выделить из соответствующих перегонных фракций путём растворения в серной кислоте с последующим разложением эфира серной кислоты при 35 °C и обратной экстрацией изопентенов насыщенными углеводородами[9]. Данный подход применяется на заводах Shell, Arco и Exxon[10].

Получение из фракции C5[править | править вики-текст]

Фракция C5 является побочным продуктом крекинга углеводородов в процессе получения этилена. Она содержит небольшое количество изопрена, другие углеводороды с пятью атомами углерода в молекуле, а также ароматические углеводороды C6—C8. Такая смесь может быть перегнана с выделением изопрена, обычно в количестве 2—5 массовых % в пересчёте на этилен. Однако выход может быть увеличен, если в качестве исходного сырья использовать более тяжёлую фракцию. Если крекинг проводится в более жёстких условиях (при повышенной температуре и в течение более долгого времени), то выход изопрена уменьшается. Тем не менее такое ужесточение условий приводит к увеличению концентрации изопрена во фракции C5. Такое обогащение коммерчески выгодно, поскольку оно уменьшает затраты на транспортировку и получение чистого изопрена[9].

Перегонка фракции C5 не позволяет получить чистый изопрен, поскольку в смеси присутствуют некоторые компоненты, которые мало отличаются по температуре кипения. Для выделения чистого изопрена были предложены методы, основанные на отгонке азеотропной смеси с пентаном, а также методы с использованием экстракции селективными органическими растворителями (N-метилпирролидоном, диметилформамидом и ацетонитрилом)[11].

В целом, с точки зрения энергозатрат, выделение изопрена подобным способом гораздо выгоднее, нежели его химический синтез[12].

Экономические факторы[править | править вики-текст]

Ключевым фактором при планировании промышленного производства изопрена является месторасположение завода по разделению фракции C5, поскольку прибыльность зависит от возможности доставить эти фракции к месту разделения из нескольких заводов, на которых производится крекинг. Также необходимо учитывать необходимость утилизации остальных углеводородов из фракции C5[13].

По состоянию на 1987 год в Западной Европе производилось 83 000 тонн диенов C5, из них 44 000 тонн приходилось на димеризованный циклопентадиен и 23 000 тонн на изопрен. Остальные 15 000 тонн составляли пиперилены[13]. К 1997 году мировые объёмы производства изопрена возросли до 850 000 тонн в год, из них 180 тыс., 130 тыс. и 30 тыс. тонн производились в США, Японии и Западной Европе соответственно. Крупнейшим производителем изопрена является Goodyear (США, 61 тыс. тонн в год)[12].

Физические свойства[править | править вики-текст]

При стандартных условиях изопрен представляет собой бесцветную летучую жидкость. Изопрен практически не растворяется в воде (0,029 мол. %), но смешивается во всех соотношениях с этанолом, диэтиловым эфиром, ацетоном и бензолом. Изопрен образует азеотропные смеси с рядом органических растворителей[1].

Химические свойства[править | править вики-текст]

Согласно данным спектроскопических исследований, при 50 °C большинство молекул изопрена находится в более устойчивой s-транс-конформации, и только 15 % молекул имеют s-цис-конформацию. Разность энергий между этими состояниями составляет 6,3 кДж/моль[14].

По химическим свойствам изопрен представляет собой типичный сопряжённый диен, вступающий в реакции присоединения, замещения, циклизации, комплексообразования и теломеризации. По сравнению с бутадиеном, он более активно реагирует с электрофилами и диенофилами за счёт донорного индуктивного эффекта метильной группы[14].

Применение[править | править вики-текст]

Синтез полимеров[править | править вики-текст]

Бо́льшая часть производимого изопрена используется в синтезе цис-1,4-полиизопрена — изопренового каучука, который по свойствам и строению похож на природный каучук и широко применяется в производстве автомобильных шин. Другой продукт полимеризации изопрена — транс-1,4-полиизопрен — имеет свойства гуттаперчи и не находит широкого использования в промышленности, кроме изготовления шаров для гольфа и изоляции проводов[15].

Важную область применения изопрена составляет синтез блок-сополимеров типа стирол-изопрен-стирол. Подобные продукты используются как термопластические полимеры и адгезивы, чувствительные к давлению. Изопрен также используется в синтезе бутилового каучука — продукта сополимеризации изопрена с изобутиленом, где мольная доля изопрена составляет от 0,5 до 3,0 %[15].

Синтез терпенов[править | править вики-текст]

С 1972 года компанией Rhodia Incorporated (США) была начата разработка методов промышленного синтеза терпенов из изопрена, ацетона и ацетилена. Синтетическая схема включала в себя присоединение хлороводорода к изопрену с образованием пренилхлорида, который затем в две стадии превращали в дегидролиналоол. Последний служил в качестве исходного соединения для синтеза различных терпенов, например, линалоола, гераниола, цитраля, β-ионона и их производных. Позже завод был закрыт, однако японский производитель Kuraray продолжил выпускать по этой схеме не только указанные продукты, но также сквалан и другие соединения. Rhodia Incorporated разработала также способ синтеза лавандулола из двух молекул изопрена при помощи синтеза Гриньяра[16].

Природные терпены состоят из фрагментов изопрена, соединённых друг с другом по принципу «голова — хвост». Синтетические аналоги также должны иметь такую структуру, а также содержать двойные связи в определённых положениях. В связи с этим, промышленный синтез терпенов методами олигомеризации и теломеризации затруднён, и обычно пользуются другими подходами. Тем не менее предложен способ синтеза мирцена димеризацией изопрена на катализаторе (натрий/диалкиламин). Этот способ реализуется в промышленном масштабе компанией Nissan Chemical Industries. Теломеризация изопрена под действием диэтиламина и бутиллития в качестве катализатора приводит к N,N-диэтилнериламину, который далее может быть превращён в линалоол, гераниол, нерол, цитронеллаль, гидроксицитранеллаль и ментол[13].

Безопасность[править | править вики-текст]

В высоких концентрациях в отношении животных изопрен проявляет анестетические свойства с последующим параличом и летальным исходом. Изопрен не вызывает точечных мутаций в тесте Эймса. Метаболизм происходит, в основном, в дыхательной системе: при этом происходит превращение изопрена в соответствующие эпоксиды и затем диолы. Насыщение происходит при атмосферных концентрациях, равных 300—500 м. д.; при более низких концентрациях скорость метаболизма прямо пропорциональна концентрации. Изопрен также синтезируется эндогенно: для мышей и крыс скорость синтеза оценивается в 0,4 и 1,9 мкмоль·ч–1·кг–1 соответственно[17].

В высоких концентрациях изопрен оказывает на человека наркотическое действие, а также может вызывать раздражение кожи, глаз, слизистых оболочек и дыхательной системы. Предельно допустимая концентрация, установленная для изопрена в СССР, составляет 40 мг/м³[17].

Изопрен взрывоопасен и легко воспламеняется[4].

Биологическая роль[править | править вики-текст]

Изопрен, в том числе, в составе молекул других терпенов, встречается в разнообразных живых организмах: животных, растениях и микрооорганизмах. В зависимости от организма число изопреновых фрагментов в молекуле терпена может составлять 1 (гемитерпены), 2 (монотерпены), 3 (сесквитерпены), 4 (дитерпены), 6 (тритерпены) или 8 (тетратерпены). В некоторых растениях обнаружены очень длинные терпены (каучук, гуттаперча), число звеньев изопрена в которых варьируется от нескольких тысяч до одного миллиона. Изопрен может также входить в состав других природных соединений неизопреноидного строения (например, прениллипидов), повышая их липофильность. Известно, что синтез изопреноидов в растениях осуществляется двумя независимыми путями: ацетат/мевалонатным путём (ацетат/MVA) и дезоксиксилозафосфат/метилэритритфосфатным путём (DOXP/MEP). Оба пути приводят к изопрену в виде так называемого «активного изопрена» — изопентенилпирофосфата (IPP), который под действием изомеразы может превращаться в изомерный 3,3-диметилаллилдифосфат (DMAPP). Сам изопрен получается из DMAPP при действии изопренсинтазы[18].

Биосинтез терпенов
Изучение эмиссии изопрена растениями методом спектроскопии в ультрафиолетовой области

В середине XX века было обнаружено, что растения выделяют в атмосферу пары изопрена. Мировые объёмы фитогенного изопрена оцениваются в (180—450)·10¹² г углерода в год. Эмиссия изопрена листьями растений ускоряется при температуре выше 28 °C и при высокой интенсивности солнечного излучения, когда процесс фотосинтеза полностью насыщен. Подтвердить это явление или проверить, способно ли растение выделять изопрен, можно при помощи спектроскопии в ультрафиолетовой области или путём анализа газов в газовом хроматографе, комбинированном с масс-спектрометром. Биосинтез изопрена ингибируется фосмидомицином, а также соединениями ряда статинов[19].

Физиологическая роль выделения растениями изопрена до конца не выяснена. Изопрен обеспечивает растениям повышенную устойчивость к перегреванию. Кроме того, как потенциальный уловитель радикалов, он может защищать растения от разрушающего воздействия озона и активных форм кислорода. Предполагается также, что поскольку синтез изопрена требует постоянной затраты молекул АТФ и НАДФН, образующихся в процессе фотосинтеза, он таким образом сохраняет фотосистемы от перевосстановления и фотоокислительного разрушения в условиях чрезмерного освещения. Недостатком такого механизма защиты является то, что углерод, связываемый растениями в процессе фотосинтеза, выбрасывается путём выделения изопрена[20].

Из гомологического ряда диеновых углеводородов изопрен является наиболее часто встречающимся диеновым углеводородом в организме человека. По некоторым оценкам, скорость синтеза изопрена в организме человека составляет около 0,15 мкмоль/(кг·ч), что соответствует приблизительно 17 мг в час для человека весом 70 кг. Изопрен также присутствует в ничтожных концентрациях во многих пищевых продуктах[источник не указан 169 дней].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 Ullmann, 2000, p. 84
  2. Ullmann, 2000, p. 83—84
  3. Ullmann, 2000, p. 85—86
  4. 1 2 Химическая энциклопедия, 1990
  5. 1 2 Industrial Organic Chemistry, 2008, p. 120
  6. Ullmann, 2000, p. 86—87
  7. 1 2 Ullmann, 2000, p. 87
  8. Ullmann, 2000, p. 87—88
  9. 1 2 3 Ullmann, 2000, p. 88
  10. Industrial Organic Chemistry, 2008, p. 118
  11. Ullmann, 2000, p. 90
  12. 1 2 Industrial Organic Chemistry, 2008, p. 117
  13. 1 2 3 Ullmann, 2000, p. 94—95
  14. 1 2 Ullmann, 2000, p. 85
  15. 1 2 Ullmann, 2000, p. 92—93
  16. Ullmann, 2000, p. 93—94
  17. 1 2 Ullmann, 2000, p. 98
  18. Herrmann, 2010, p. 12—17
  19. Herrmann, 2010, p. 22—27
  20. Herrmann, 2010, p. 31—33

Литература[править | править вики-текст]

  • Химическая энциклопедия / Гл. ред. И. Л. Кнунянц. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 191—192.
  • The Chemistry and Biology of Volatiles / Edited by A. Herrmann. — Wiley, 2010. — ISBN 9780470777787.
  • Weissermel K., Arpe H.-J. 1,3-Diolefins // Industrial Organic Chemistry. — 4th ed.. — Wiley, 2008. — P. 107—126. — ISBN 9783527619191. — DOI:10.1002/9783527619191.ch5
  • Weitz H. M., Loser E. Isoprene (англ.) // Ullmann's Encyclopedia of Industrial Chemistry. — Wiley, 2000. — DOI:10.1002/14356007.a14_627

Ссылки[править | править вики-текст]