Сферический многогранник

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Наиболее известный сферический многогранник — это футбольный мяч, рассматриваемый как сферический усечённый икосаэдр.
Этот пляжный мяч[en] показывает осоэдр с шестью серповидными гранями, если удалить два белых круга на концах.

В геометрии сферический многогранник или сферическая мозаика — это тa мозаика на сфере, в которой поверхность разделена большими дугами на ограниченные области, называемые сферическими многоугольниками. Большая часть теории симметричных многогранников использует сферические многогранники.

Наиболее известным примером сферического многогранника служит футбольный мяч, который можно понимать как усечённый икосаэдр.

Некоторые «несобственные» многогранники, такие как осоэдры и их двойственные диэдры, существуют только как сферические многогранники и не имеют аналогов с плоскими гранями. В таблице с примерами ниже {2, 6} — осоэдр, а — {6, 2} двойственный ему диэдр.

История[править | править код]

Первые известные сделанные человеком многогранники — это сферические многогранники, высеченные в камне. Многие из них были найдены в Шотландии и датируются периодом Неолита.

Во времена европейских «тёмных столетий» исламский учёный Абуль-Вафа аль-Бузджани написал первую серьёзную работу о сферических многогранниках.

Две сотни лет назад, в начале 19-го века, Пуансо использовал сферические многогранники для обнаружения четырёх правильных звёздчатых многогранников.

В середине 20-го века Коксетер использовал их для перечисления всех (за исключением одного) однородных многогранников[en], посредством калейдоскопического построения (Построение Витхоффа).

Примеры[править | править код]

Все правильные, полуправильные многогранники и их двойственные можно спроектировать на сферу как мозаику. В таблице ниже указаны символы Шлефли {p, q} и схема вершинной фигуры a.b.c. …:

Символ Шлефли {p, q} t{p, q} r{p, q} t{q, p} {q, p} rr{p, q} tr{p, q} sr{p, q}
Вершинная фигура pq q.2p.2p p.q.p.q p. 2q.2q qp q.4.p. 4 4.2q.2p 3.3.q.3.p
Тетраэдральные
(3 3 2)
Uniform tiling 332-t0-1-.png
33
Uniform tiling 332-t01-1-.png
3.6.6
Uniform tiling 332-t1-1-.png
3.3.3.3
Uniform tiling 332-t12.png
3.6.6
Uniform tiling 332-t2.png
33
Uniform tiling 332-t02.png
3.4.3.4
Uniform tiling 332-t012.png
4.6.6
Spherical snub tetrahedron.png
3.3.3.3.3
Spherical triakis tetrahedron.png
V3.6.6
Spherical dual octahedron.png
V3.3.3.3
Spherical triakis tetrahedron.png
V3.6.6
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Spherical tetrakis hexahedron.png
V4.6.6
Uniform tiling 532-t0.png
V3.3.3.3.3
Октаэдральные
(4 3 2)
Uniform tiling 432-t0.png
43
Uniform tiling 432-t01.png
3.8.8
Uniform tiling 432-t1.png
3.4.3.4
Uniform tiling 432-t12.png
4.6.6
Uniform tiling 432-t2.png
34
Uniform tiling 432-t02.png
3.4.4.4
Uniform tiling 432-t012.png
4.6.8
Spherical snub cube.png
3.3.3.3.4
Spherical triakis octahedron.png
V3.8.8
Spherical rhombic dodecahedron.png
V3.4.3.4
Spherical tetrakis hexahedron.png
V4.6.6
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Spherical disdyakis dodecahedron.png
V4.6.8[en]
Spherical pentagonal icositetrahedron.png
V3.3.3.3.4[en]*
Икосаэдральные
(5 3 2)
Uniform tiling 532-t0.png
53
Uniform tiling 532-t01.png
3.10.10
Uniform tiling 532-t1.png
3.5.3.5
Uniform tiling 532-t12.png
5.6.6
Uniform tiling 532-t2.png
35
Uniform tiling 532-t02.png
3.4.5.4
Uniform tiling 532-t012.png
4.6.10
Spherical snub dodecahedron.png
3.3.3.3.5
Spherical triakis icosahedron.png
V3.10.10
Spherical rhombic triacontahedron.png
V3.5.3.5
Spherical pentakis dodecahedron.png
V5.6.6
Spherical deltoidal hexecontahedron.png
V3.4.5.4
Spherical disdyakis triacontahedron.png
V4.6.10
Spherical pentagonal hexecontahedron.png
V3.3.3.3.5[en]
Диэдральные
примеры=6
(2 2 6)
Hexagonal dihedron.png
62
Dodecagonal dihedron.png
2.12.12
Hexagonal dihedron.png
2.6.2.6
Spherical hexagonal prism.png
6.4.4
Hexagonal Hosohedron.svg
26
Spherical truncated trigonal prism.png
4.6.4
Spherical truncated hexagonal prism.png
4.4.12[en]
Spherical hexagonal antiprism.png
3.3.3.6
Класс 2 3 4 5 6 7 8 10
Призма
(2 2 p)
Digonal dihedron.png Spherical triangular prism.png Spherical square prism2.png Spherical pentagonal prism.png Spherical hexagonal prism2.png Spherical heptagonal prism.png Spherical octagonal prism2.png Spherical decagonal prism2.png
Бипирамида
(2 2 p)
Spherical digonal bipyramid2.png Spherical trigonal bipyramid.png Spherical square bipyramid2.png Spherical pentagonal bipyramid.png Spherical hexagonal bipyramid2.png Spherical heptagonal bipyramid.png Spherical octagonal bipyramid2.png Spherical decagonal bipyramid2.png
Антипризма Spherical digonal antiprism.png Spherical trigonal antiprism.png Spherical square antiprism.png Spherical pentagonal antiprism.png Spherical hexagonal antiprism.png Spherical heptagonal antiprism.png Spherical octagonal antiprism.png
Трапецоэдр Spherical digonal antiprism.png Spherical trigonal trapezohedron.png Spherical tetragonal trapezohedron.png Spherical pentagonal trapezohedron.png Spherical hexagonal trapezohedron.png Spherical heptagonal trapezohedron.png Spherical octagonal trapezohedron.png Spherical decagonal trapezohedron.png

Несобственные случаи[править | править код]

Сферические мозаики допускают случаи, которые невозможны для многогранников, а именно — осоэдры, правильные фигуры {2,n}, и диэдры, правильные фигуры {n,2}.

Семейство правильных осоэдов
Рисунок Spherical digonal hosohedron.png Spherical trigonal hosohedron.png Spherical square hosohedron.png Spherical pentagonal hosohedron.png Spherical hexagonal hosohedron.png Spherical heptagonal hosohedron.png Spherical octagonal hosohedron.png
Шлефли {2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8}…
Коксетер CDel node 1.pngCDel 2x.pngCDel node.pngCDel 2x.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 6.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 7.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 8.pngCDel node.png
Грани и
рёбра
2 3 4 5 6 7 8
Вершины 2
Правильные диэдры: (сферические мозаики)
Рисунок Digonal dihedron.png Trigonal dihedron.png Tetragonal dihedron.png Pentagonal dihedron.png Hexagonal dihedron.png
Шлефли {2,2} {3,2} {4,2} {5,2} {6,2}…
Коксетер CDel node 1.pngCDel 2x.pngCDel node.pngCDel 2x.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 2x.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 2x.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 2x.pngCDel node.png
Грани 2 {2} 2 {3} 2 {4} 2 {5} 2 {6}
Рёбра и
вершины
2 3 4 5 6

Связь с мозаиками на проективной плоскости[править | править код]

Поскольку сфера является 2-к-1 накрытием проективной плоскости, проективные многогранники соответствуют двойному накрытию сферическими многогранниками, имеющими центральную симметрию.

Наиболее известными примерами проективных многогранников служат правильные проективные многогранники, образованные из центрально симметричных правильных многогранников, а также из бесконечных семейств чётных диэдров и осоэдров: [1]

См. также[править | править код]

Примечания[править | править код]

  1. Кокстер, 1966, с. 547-552 §3 Правильные карты.

Литература[править | править код]

  • Peter McMullen, Egon Schulte. 6C. Projective Regular Polytopes // Abstract Regular Polytopes. — 1st. — Cambridge University Press, 2002. — ISBN 0-521-81496-0.
  • L. Poinsot. Memoire sur les polygones et polyèdres // J. de l'École Polytechnique. — 1810. — Вып. 9. — С. 16–48.
  • H. S. M. Coxeter, M. S. Longuet-Higgins, J. C. P. Miller. Uniform polyhedra // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — The Royal Society, 1954. — Т. 246, вып. 916. — С. 401–450. — ISSN 0080-4614. — DOI:10.1098/rsta.1954.0003.