Осоэдр

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Множество правильных n-угольных осоэдров
Пример шестиугольного осоэдра на сфере
Пример шестиугольного осоэдра на сфере
Тип Регулярный многогранник[en] или сферическая мозаика
Комбинаторика
Элементы
n рёбер
2 вершины
Χ = 2
Грани n двуугольников
Конфигурация вершины 2n
Двойственный многогранник диэдр
Классификация
Символ Шлефли {2,n}
Символ Витхоффа[en] n | 2 2
Диаграмма Дынкина CDel node 1.pngCDel 2x.pngCDel node.pngCDel n.pngCDel node.png
Группа симметрии Dnh, [2,n], (*22n), порядок 4n
Логотип Викисклада Медиафайлы на Викискладе
Этот пляжный мяч[en] показывает осоэдр с шестью серповидными гранями, если удалить два белых круга на концах.

n-угольный осоэдр — мозаика из двуугольников на сферической поверхности такая, что каждый такой двуугольник имеет две общие вершины (противоположные точки сферы) с другими двуугольниками.

Правильный n-угольный осоэдр имеет символ Шлефли {2, n}, а каждый двуугольник имеет внутренний угол 2π/n радиан (360/n градусов[1][2].

Осоэдры как правильные многогранники[править | править код]

Для правильных многогранников, символ Шлефли которых равен {mn}, число многоугольных граней можно найти по формуле:

Правильные многогранники, известные с античных времён, являются единственными многогранниками, дающими в результате деления целое число для m ≥ 3 и n ≥ 3. Ограничение m ≥ 3 приводит к тому, что многоугольные грани должны иметь по меньшей мере три стороны.

Если рассматривать многогранники как сферическую мозаику, это ограничение может быть ослаблено, поскольку двуугольники можно рассматривать как сферические двуугольные фигуры, имеющие ненулевую площадь. Допущение m = 2 порождает новый бесконечный класс правильных многогранников, то есть осоэдров.

Trigonal hosohedron.png
Правильный треугольный осоэдр, {2,3}, представленный в виде мозаики из трёх двуугольников на сфере.
4hosohedron.svg
Правильный четырёхугольный осоэдр, представленный в виде мозаики из четырёх двуугольников на сфере.
Семейство правильных осоэдров
n 2 3 4 5 6 7 8 9 10 11 12 ...
Рисунок Spherical digonal hosohedron.png Spherical trigonal hosohedron.png Spherical square hosohedron.png Spherical pentagonal hosohedron.png Spherical hexagonal hosohedron.png Spherical heptagonal hosohedron.png Spherical octagonal hosohedron.png Spherical enneagonal hosohedron.png Spherical decagonal hosohedron.png Spherical hendecagonal hosohedron.png Spherical dodecagonal hosohedron.png
Шлефли {2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8} {2,9} {2,10} {2,11} {2,12}
Коксетер CDel node 1.pngCDel 2x.pngCDel node.pngCDel 2x.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 6.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 7.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 8.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 9.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 1x.pngCDel 0x.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 1x.pngCDel 1x.pngCDel node.png CDel node 1.pngCDel 2x.pngCDel node.pngCDel 1x.pngCDel 2x.pngCDel node.png
Граней и
рёбер
2 3 4 5 6 7 8 9 10 11 12
Вершин 2

Калейдоскопическая симметрия[править | править код]

Двуугольные грани 2n-осоэдра , {2,2n}, представляют фундаментальные области диэдральной симметрии[en]: Cnv, [n], (*nn), порядок 2n. Области зеркального отражения можно показать, используя поочерёдную раскраску двуугольников. Рассечения двуугольников на два сферических треугольника создают бипирамиды и определяют диэдрическую симметрию Dnh, порядок 4n.

Симметрия C1v C2v C3v C4v C5v C6v
Осоэдр {2,2} {2,4} {2,6} {2,8} {2,10} {2,12}
Фундаментальные области Spherical digonal hosohedron2.png Spherical square hosohedron2.png Spherical hexagonal hosohedron2.png Spherical octagonal hosohedron2.png Spherical decagonal hosohedron2.png Spherical dodecagonal hosohedron2.png

Связь с телами Штейнмеца[править | править код]

Четырёхугольный осоэдр топологически эквивалентен бицилиндру[en], пересечению двух цилиндров под прямым углом[3].

Производные многогранники[править | править код]

Двойственным многогранником n-угольного осоэдра {2, n} является n-угольный диэдр, {n, 2}. Многогранник {2,2} самодвойственен и является осоэдром и диэдром одновременно.

Осоэдр можно модифицировать тем же способом, что и другие многогранники, порождая усечённые[en] варианты. Усечённый n-угольный осоэдр — это n-угольная призма.

Бесконечноугольный осоэдр[править | править код]

В пределе осоэдр становится бесконечноугольным и представляет собой двумерное замощение:

Apeirogonal hosohedron.png

Осотопы[править | править код]

Многомерные аналоги, в общем случае, называются осотопами. Правильный осототоп с символом Шлефли {2,p,…,q} имеет две вершины и в обеих вершинах вершинной фигурой служит {p,…,q}.

Двумерный осотоп (многоугольник) {2} — это двуугольник.

Этимология[править | править код]

Термин «осоэдр» (hosohedron) предложен Г. С. М. Коксетером и, возможно, происходит от греческого ὅσος (осос) «сколь угодно», что указывает на возможность осоэдра иметь «сколь угодно много граней»[4].


Однородные шестиугольные диэдральные сферические многогранники
Симметрия: [6,2], (*622) [6,2]+, (622) [6,2+], (2*3)
Hexagonal dihedron.png Dodecagonal dihedron.png Hexagonal dihedron.png Spherical hexagonal prism.png Spherical hexagonal hosohedron.png Spherical truncated trigonal prism.png Spherical dodecagonal prism2.png Spherical hexagonal antiprism.png Spherical trigonal antiprism.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
{6,2} t{6,2} r{6,2} t{2,6} {2,6} rr{2,6} tr{6,2}[en] sr{6,2} s{2,6}
Двойственные им многогранники
Spherical hexagonal hosohedron.png Spherical dodecagonal hosohedron.png Spherical hexagonal hosohedron.png Spherical hexagonal bipyramid.png Hexagonal dihedron.png Spherical hexagonal bipyramid.png Spherical dodecagonal bipyramid.png Spherical hexagonal trapezohedron.png Spherical trigonal trapezohedron.png
V62 V122 V62 V4.4.6[en] V26 V4.4.6[en] V4.4.12 V3.3.3.6[en] V3.3.3.3
*n32 варианты симметрии правильных мозаик: n3 или {n,3}
Сферические Евклидовы Компактные
гиперболические.
Параком-
пактные.
Некомпактные гиперболические.
Spherical trigonal hosohedron.png Uniform tiling 332-t0.png Uniform tiling 432-t0.png Uniform tiling 532-t0.png Uniform polyhedron-63-t0.png H2 tiling 237-1.png H2 tiling 238-1.png H2 tiling 23i-1.png H2 tiling 23j12-1.png H2 tiling 23j9-1.png H2 tiling 23j6-1.png H2 tiling 23j3-1.png
{2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞,3} {12i,3} {9i,3} {6i,3} {3i,3}

См. также[править | править код]

Примечания[править | править код]

  1. Coxeter, 1973, p. 12.
  2. McMullen & Schulte, 2002, p. 161.
  3. Weisstein, Eric W. Steinmetz Solid (англ.) на сайте Wolfram MathWorld.
  4. Schwartzman, 1994, p. 108–109.

Литература[править | править код]

Ссылки[править | править код]