Усечённый додекаэдр

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Усечённый додекаэдр
Truncateddodecahedron.jpg
(вращающаяся модель, 3D-модель)
Тип архимедово тело
Свойства выпуклый, изогональный
Комбинаторика
Элементы
32 грани
90 рёбер
60 вершин
Грани 20 треугольников
12 десятиугольников
Конфигурация вершины 3.102
Развёртка
Truncated dodecahedron flat.png
Двойственный многогранник триакисикосаэдр
Классификация
Обозначения tD
Группа симметрии Ih (икосаэдрическая)
Commons-logo.svg Усечённый додекаэдр на Викискладе

Усечённый додека́эдр[1][2][3]полуправильный многогранник (архимедово тело) с 32 гранями, составленный из 20 правильных треугольников и 12 правильных десятиугольников.

В каждой из его 60 одинаковых вершин сходятся две десятиугольных грани и одна треугольная. Телесный угол при вершине равен

Усечённый додекаэдр имеет 90 рёбер равной длины. При 30 рёбрах (между двумя десятиугольными гранями) двугранные углы равны как в додекаэдре; при 60 рёбрах (между треугольной и восьмиугольной гранями) как в икосододекаэдре.

Усечённый додекаэдр можно получить из обычного додекаэдра, «срезав» с того 20 правильных треугольных пирамид, — либо как пересечение имеющих общий центр додекаэдра и икосаэдра.

В координатах[править | править код]

Усечённый додекаэдр можно расположить в декартовой системе координат так, чтобы координаты его вершин были всевозможными циклическими перестановками наборов чисел

где — отношение золотого сечения.

Начало координат будет при этом центром симметрии многогранника, а также центром его описанной и полувписанной сфер.

Метрические характеристики[править | править код]

Если усечённый додекаэдр имеет ребро длины , его площадь поверхности и объём выражаются как

Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен

радиус полувписанной сферы (касающейся всех рёбер в их серединах) —

Вписать в усечённый додекаэдр сферу — так, чтобы она касалась всех граней, — невозможно. Радиус наибольшей сферы, которую можно поместить внутри усечённого додекаэдра с ребром (она будет касаться только всех десятиугольных граней в их центрах), равен

Расстояние от центра многогранника до центра любой треугольной грани превосходит и равно

Примечания[править | править код]

Ссылки[править | править код]

Литература[править | править код]