Мнимая единица

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Корень из минус единицы»)
Перейти к навигации Перейти к поиску
Число на комплексной плоскости. Вещественные числа лежат на горизонтальной оси, чисто мнимые — на вертикальной.

Мни́мая едини́ца — комплексное число, квадрат которого равен . В математике и физике мнимая единица обозначается латинской буквой , в электротехнике — буквой .

Введение мнимой единицы позволяет расширить поле вещественных чисел до поля комплексных чисел. Одной из причин введения мнимой единицы является то, что не каждое полиномиальное уравнение с вещественными коэффициентами имеет решения в поле вещественных чисел. Так, уравнение не имеет вещественных корней. Однако оказывается, что любое полиномиальное уравнение с комплексными коэффициентами имеет комплексное решение — об этом говорит основная теорема алгебры. Существуют и другие области, в которых комплексные числа приносят большую пользу.

Исторически мнимая единица сначала была введена для решения вещественного кубического уравнения: при наличии трёх вещественных корней для получения двух из них формула Кардано требовала извлечения квадратных корней из отрицательных чисел.

Вплоть до конца XIX века наряду с символом использовалось обозначение однако современные источники предписывают во избежание ошибок под знаком радикала помещать только неотрицательные выражения[1][2]. Более того, помимо мнимой единицы, существует ещё одно комплексное число, квадрат которого равен — число в паре с которым мнимая единица составляет следующие свойства:

  • числа i и −i являются одновременно противоположными и обратными: последнее верно потому, что произведение этих чисел равно 1;
  • i и −i комплексно сопряжены, так что их сумма (ноль) и произведение (единица) вещественны одновременно (свойства сопряжённых чисел).

Термин «мнимая единица» может употребляться не только для комплексных чисел, но и для их обобщений.

Степени мнимой единицы

[править | править код]

Степени повторяются в цикле:

что может быть записано для любой степени в виде:

где n — любое целое число.

Отсюда: , где mod 4 — это остаток от деления на 4.

Возведение в комплексную степень является многозначной функцией. Например, таковой является величина , которая представляет бесконечное множество вещественных чисел ():

где

При получаем число соответствующее главному значению аргумента (или главному значению комплексного натурального логарифма) мнимой единицы.

Также верно, что .

Факториал мнимой единицы i можно определить как значение гамма-функции от аргумента 1 + i:

Также

[3]

потому что |i!|2 = i! i! = i! (i)! = Γ(1 + i) Γ(1 − i), что по рекуррентному соотношению гамма-функции можно переписать как i Γ(i) Γ(1 − i), а затем по формуле дополнения Эйлера — как iπ/sin πi = π/sinh π.

Корни из мнимой единицы

[править | править код]
Корни квадратные из мнимой единицы
Корни кубические из мнимой единицы (вершины треугольника)

В поле комплексных чисел корень n-й степени имеет n значений. На комплексной плоскости корни из мнимой единицы находятся в вершинах правильного n-угольника, вписанного в окружность с единичным радиусом.

В частности, и

Также корни из мнимой единицы могут быть представлены в показательном виде:

Иные мнимые единицы

[править | править код]

В конструкции удвоения по Кэли — Диксону или в рамках алгебры по Клиффорду «мнимых единиц расширения» может быть несколько. Но в этом случае могут возникать делители нуля и иные свойства, отличные от свойств комплексного «i». Например, в теле кватернионов три антикоммутативных мнимых единицы, а также имеется бесконечно много решений уравнения .

К вопросу об интерпретации и названии

[править | править код]

Гаусс утверждал также, что если бы величины 1, −1 и −1 назывались соответственно не положительной, отрицательной и мнимой единицей, а прямой, обратной и побочной, то у людей не создавалось бы впечатления, что с этими числами связана какая-то мрачная тайна. По словам Гаусса, геометрическое представление дает истинную метафизику мнимых чисел в новом свете. Именно Гаусс ввёл термин «комплексные числа» (в противоположность «мнимым числам» Декарта) и использовал для обозначения −1 символ i.Морис Клайн, «Математика. Утрата определённости». Глава VII. Нелогичное развитие: серьёзные трудности на пороге XIX в.

Обозначения

[править | править код]

Обычное обозначение — , но в электро- и радиотехнике мнимую единицу принято обозначать , чтобы не путать с обозначением мгновенной силы тока: [4][5].

В языке программирования Python мнимая единица записывается как 1j.

В языке программирования Wolfram Language мнимая единица записывается как 𝕚.

Примечания

[править | править код]
  1. Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — С. 49. — 591 с.
  2. Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — 2-е изд. — М.: Наука, 1970. — С. 33. — 720 с.
  3. "abs(i!) Архивная копия от 6 июля 2015 на Wayback Machine", WolframAlpha.
  4. Комплексное число : [арх. 8 декабря 2022] // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  5. Мнимая единица // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 708.