Тетрахлорэтилен

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Тетрахлорэтилен[1][2][3][4]
Perkloretylen.png
Тетрахлорэтилен
Общие
Систематическое
наименование

1,1,2,2-тетрахлорэтен

Традиционные названия

перхлорэтилен

Хим. формула

C2Cl4

Физические свойства
Состояние

бесцветная жидкость

Молярная масса

165,83 г/моль

Плотность

1,6230 г/см³

Динамическая вязкость

0,88·10-3 Па·с

Энергия ионизации

9,32±0,01 эВ[5]

Термические свойства
Т. плав.

−22,4 °C

Т. кип.

121 °C

Т. всп.

45 °C

Кр. темп.

340 °C

Кр. давл.

44,3 атм

Уд. теплоёмк.

858 Дж/(кг·К)

Энтальпия образования

−51,1 кДж/моль

Энтальпия кипения

34,7 кДж/моль

Давление пара

1,86 кПа (20 °С)

Химические свойства
Растворимость в воде

0,015 г/100 мл

Диэлектр. прониц.

2,20

Оптические свойства
Показатель преломления

1,5044

Структура
Дипольный момент

0 Д[6]

Классификация
Рег. номер CAS

127-18-4

PubChem
Рег. номер EINECS

204-825-9

SMILES
InChI
Рег. номер EC

204-825-9

RTECS

KX3850000

ChEBI

17300

Номер ООН

1897

ChemSpider
Безопасность
ПДК

10 мг/м3

Токсичность

При длительном контакте оказывает токсическое действие на ЦНС и печень

R-фразы

R40, R51/53

S-фразы

R23, R36/37, R61

H-фразы

H351, H411

P-фразы

P273, P281

Пиктограммы СГС

Пиктограмма "Опасность для здоровья" согласованной на глобальном уровне системы классификации и маркировки химических веществ (СГС)Пиктограмма "Окружающая среда" согласованной на глобальном уровне системы классификации и маркировки химических веществ (СГС)

NFPA 704
NFPA 704.svg
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Тетрахлорэтилен (перхлорэтилен) — бесцветная жидкость с резким запахом, хлорорганический растворитель. Широкое применение находит в химчистке и обезжиривании металлов.

Получение[править | править вики-текст]

Впервые тетрахлорэтилен был получен М. Фарадеем при термическом разложении гексахлорэтана[4].

В промышленности тетрахлорэтилен получают несколькими способами. Первый метод, игравший важное промышленное значение в прошлом, заключается в получении тетрахлорэтилена из ацетилена через трихлорэтилен. Хлорирование трихлорэтилена в жидкой фазе при температуре 70—110 °С в присутствии FeCl3 (0,1—1% масс.) даёт пентахлорэтан, который затем подвергают жидкофазному (80—120 °С, Ca(OH)2) или каталитическому термическому крекингу (170—330 °С, активированный уголь). Общий выход достигает 90—94% по ацетилену. Однако после повышения цен на ацетилен этот метод утратил своё значение[7].

Главным методом получения тетрахлорэтилена является окислительное хлорирование этилена или 1,2-дихлорэтана. Субстрат, кислород и хлор реагируют в присутствии катализатора (хлорид калия, хлорид меди(II) на силикагеле) при 420—460 °С. В результате серии реакций происходит образование трихлорэтилена и тетрахлорэтилена. Выход по хлору составляет 90—98%. Побочным процессом является окисление этилена до оксидов углерода, который ускоряется при превышении оптимальной температуры процесса. Продукты разделяются и очищаются перегонкой. Соотношение продуктов можно регулировать соотношением реагентов[8].

Высокотемпературное хлорирование углеводородов C1—C3 или их хлорпроизводных является вторым по важности источником тетрахлорэтилена. Он не требует чистого сырья и позволяет использовать отходы производства[9].

В 1985 году производство тетрахлорэтилена в США составило 380 тыс. тонн, в Европе — 450 тыс. тонн. Из-за оптимизации процесса химчистки и уменьшения выбросов вещества в атмосферу, а также по причине ужесточающихся экологических требований производство тетрахлорэтилена сокращалось с конца 1970-х годов. Уже в 1993 году объёмы производства в США оценивались в 123 тыс. тонн в год и 74 тыс. тонн в ФРГ[10].

Физические свойства[править | править вики-текст]

Тетрахлорэтилен негорюч, невзрывоопасен и не самовоспламеняется[1]. Он смешивается с большинством органических растворителей. С некоторыми растворителями тетрахлорэтилен образует азеотропные смеси.

Состав и температуры кипения азеотропных смесей тетрахлорэтилена[4]
Второй компонент Массовая доля тетрахлорэтилена Т. кип. азеотропной смеси при 101,3 кПа, °С
вода 15,9 87,1
метанол 63,5 63,8
этанол 63,0 76,8
пропанол-1 48,0 94,1
пропанол-2 70,0 81,7
бутанол-1 29,0 109,0
бутанол-2 40,0 103,1
муравьиная кислота 50,0 88,2
уксусная кислота 38,5 107,4
пропионовая кислота 8,5 119,2
изомасляная кислота 3,0 120,5
ацетамид 2,6 120,5
пиррол 19,5 113,4
1,1,2-трихлорэтан 43,0 112,0
1-хлор-2,3-эпоксипропан 51,5 110,1
этиленгликоль 6,0 119,1

Химические свойства[править | править вики-текст]

Тетрахлорэтилен является самым устойчивым соединением из всех хлорпроизводных этана и этилена. Он устойчив к гидролизу и меньше способствует коррозии, чем другие хлорсодержащие растворители[4].

Окисление
Окисление тетрахлорэтилена на воздухе даёт трихлорацетилхлорид и фосген, процесс протекает под действием УФ-излучения:

Этот процесс может быть замедлен при использовании аминов и фенолов в качестве стабилизаторов (обычно применяют N-метилпиррол и N-метилморфолин). Процесс, однако, может использоваться для производства трихлорацетилхлорида[4].

Хлорирование
При реакции тетрахлорэтилена с хлором в присутствии небольшого количества хлорида железа(III) FeCl3 (0,1 %) в качестве катализатора при 50-80 °С образуется гексахлорэтан[11]:

По реакции тетрахлорэтилена с хлором и HF в присутствии SbF5 синтезируют фреон-113[1].

Гидролиз
Происходит только при нагревании в кислой среде (лучше всего с серной кислотой):

при этом образуется трихлоруксусная кислота.

Восстановление
Тетрахлорэтилен может быть частично или полностью восстановлен в газовой фазе в присутствии таких катализаторов как: никель, палладий, платиновая чернь и др.:

Применение[править | править вики-текст]

Около 60 % всего расходуемого тетрахлорэтилена находит применение как растворитель в химчистке. Тетрахлорэтилен заменил все другие растворители в этой области, поскольку он не горюч и может быть безопасно использован без особых мер предосторожности. Из-за своей устойчивости тетрахлорэтилен содержит низкий процент стабилизаторов и по этой же причине используется наряду с трихлорэтиленом и 1,1,1-трихлорэтаном для обезжиривания металлов, особенно, алюминия. В меньших количествах тетрахлорэтилен применяется в текстильной промышленности и производстве фреона-113[12][1].

Примечания[править | править вики-текст]

  1. 1 2 3 4 Химическая энциклопедия / Под ред. И. Л. Кнунянца. — М: Большая Российская энциклопедия, 1992. — Т. 4. — С. 557. — ISBN 5-85270-039-8.
  2. Dean J. A. Lange's Handbook of Chemistry. — McGraw-Hill, 1999. — ISBN 0-07-016384-7.
  3. Sigma-Aldrich. Tetrachloroethylene, anhydrous. Проверено 24 апреля 2013. Архивировано 29 апреля 2013 года.
  4. 1 2 3 4 5 Ullmann, 2006, p. 75.
  5. 1 2 http://www.cdc.gov/niosh/npg/npgd0599.html
  6. 1 2 CRC Handbook of Chemistry and Physics / W. M. Haynes — 95 — Boca Raton: CRC Press, 2014. — P. 15–21. — ISBN 978-1-4822-0868-9
  7. Ullmann, 2006, p. 76.
  8. Ullmann, 2006, p. 74, 76.
  9. Ullmann, 2006, p. 77—78.
  10. Ullmann, 2006, p. 79—80.
  11. Ошин Л.А. Промышленные хлорорганические продукты. — М.: Химия, 1978. — 656 с.
  12. Ullmann, 2006, p. 79.

Литература[править | править вики-текст]

  • Rossberg M., Lendle W., Pfleiderer G., Tögel A., Dreher E.-L., Langer E., Rassaerts H., Kleinschmidt P., Strack H., Cook R., Beck U., Lipper K.-A., Torkelson T. R., Löser E., Beutel K. K., Mann T. Chlorinated Hydrocarbons // Ullmann's Encyclopedia of Industrial Chemistry. — Wiley, 2006. — DOI:10.1002/14356007.a06_233.pub2
  • U.S. Department of Health and Human Services. Toxicological profile for tetrachloroethylene (1997). Проверено 24 апреля 2013. Архивировано 29 апреля 2013 года.