Полисахариды

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Полисахарид»)
Перейти к: навигация, поиск
3D структура целлюлозы, бета-глюканового полисахарида.
Амилоза – это однолинейный полимер глюкозы главным образом, связанный с α(1→4) связями. Он может быть сделан из нескольких тысяч глюкозных остатков. Это один из двух компонентов крахмала, второй – амилопектин.

Полисахариды (гликаны) – это молекулы полимерных углеводов, соединенных длинной цепочкой моносахаридных остатков, объединённые вместе гликозидной связью, а при гидролизе становятся составной частью моносахаридов или олигосахаридов. Они выстраиваются либо линейной в структурной форме, либо разветвленной. Примерами могут служить резервные полисахариды, такие как крахмал и гликоген и структурные полисахариды – целлюлоза и хитин.

Полисахариды чаще всего неоднородны, состоят из смеси непрочных повторяющихся остатков. В зависимости от структуры у этих макромолкекул могут быть различные свойства в зависимости от их моносахаридных блочных молекул. Они могут быть аморфные или даже нерастворимы в воде.[1][2] Когда в полисахариде находятся все моносахариды одного типа, полисахарид называется гомополисахаридом или гомокликаном, но когда присутствует больше одного типа моносахаридов, их называют гетерополисахаридами или гетерогликанами.[3][4]

Натуральные сахариды в основном состоят из простых углеводов, называемых моносахаридами с общей формулой (CH2O)n, где n – это три и более. Иные названия моносахаридов: глюкоза, фруктоза и глицеральдегид.[5] У полисахаридов, тем не менее, есть общая формула Cx(H2O)y где x – это обычно число между 200 и 2500. Учитывая, что повторяющиеся остатки в полимерной цепочке зачастую шестиуглеродные моносахариды, общая формула может также представляться в таком виде (C6H10O5)n, где 40≤n≤3000.

Полисахариды состоят из более, чем десяти моносахаридных остатков. Определение углевода к какой-либо категории полисахаридов и олигосахаридов зависит от личного мнения. Полисахариды являются главным достоинством биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Крахмал (полимер глюкозы) используется в качестве запасного вещества в растениях, в виде и амилозы и разветвленного амилопектина. У животных структурно похожий глюкозный полимер более плотный разветвленный гликоген, иногда называется «животным крахмалом». По своим свойствам гликоген ускоряет метаболизм, который необходим для жизненно необходимых процессов животных.

Целлюлоза и хитин – это структурные полисахариды. Целлюлоза служит структурной основой клеточной мембраны растений и других микроорганизмов, это самое наиболее распространенное органическое вещество на земле.[6] Она очень чаще всего используется в значительной степени при производстве бумаги и текстильной индустрии, и в качестве исходного сырья для производства шелка (при создании вискозы), ацетилцеллюлозы, целлулоида и нитроцеллюлозы. У хитина такая же структура, но у него азото-содержащие боковое ответвление, увеличивающее его прочность. Он есть у членистоногих экзоскелетов и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также входят в каллозу или ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

Функция[править | править вики-текст]

Структура[править | править вики-текст]

Пищевые полисахариды – основные источники энергии. Многие микроорганизмы легко могут разложить крахмал до глюкозы; однако, большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и проститами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усвояемы, они поставляют очень важные пищевые элементы для людей. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокн – это изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.[10]

Пищевые волокна все ещё официально являются необходимым макроэлементом (с 2005 г.) и все также считаются важными составляющими для питания по мнению диетологов, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11][12]

Резервные полисахариды[править | править вики-текст]

Крахмал[править | править вики-текст]

Крахмалы – это полимеры глюкозы, в которых остатки глюкопиранозы образуют альфа-соединения. Они сделаны из смеси амилозы (15–20%) и амилопектина (80–85%). Амилоза состоит из линейной цепочки нескольких сотен глюкозных молекул, а амилопектин – это разветвленная молекула, сделанная из нескольких тысяч глюкозных остатков (каждая цепочка из 24–30 глюкозных остатков – это одна единица амилопектина). Крахмалы нерастворимы в воде. Они могут перевариться при разрыве альфа-соединений (гликозидные соединения). И у животных, и людей есть амилазы, поэтому они могут переварить крахмал. Картофель, рис, мука и кукуруза – главные источники крахмала в человеческом питании. Растения запасают крахмалы в виде глюкозы.

Гликоген[править | править вики-текст]

Гликоген служит вторым по значению долговременным энергетическим запасом в клетках животных и грибов, который откладывается в виде энергии в жировой ткани. Гликоген в первую очередь образовывается в печени и мышцах, но также может вырабатываться гликогеногенезом в головном мозге и желудке.[13]

Гликоген – это аналог крахмала, глюкозный полимер в растениях, иногда его называют «животный крахмал»,[14] имеет схожую структуру с амилопектином, но больше разветвлен и компактен, чем крахмал. Гликоген – это полимер, связанный α(1→4) гликозидными связями, с α(1→6) в точках разветвления. Гликоген находится в форме гранул в цитозоли/цитоплазмы многих клеток, и играет важную роль глюкозном цикле. Гликоген формирует запас энергии, которая быстро пускается в обращение при необходимости в глюкозе, но он менее плотный и быстрее доступен в качестве энергии, чем триглицериды (липиды).

В печеночных гепатоцитах гликоген может образоваться до восьмидесяти процентов (100–120  у взрослых) чистого веса вскоре после еды.[15] Только гликоген, запасенный в печени может быть доступен для других органов. В мышечной массе гликоген находится в небольшой концентрации от одного до двух процентов. Количество гликогена, отложенного в теле — в особенности в мышцах, печени и эритроцитах[16][17][18]— меняется от физической активности, основного обмена и пищевых привычек, таких как периодическое голодание. Небольшое количество гликогена находится в почках, и ещё меньше в клетках глии в головном мозге и лейкоцитах. В матке также запасается гликоген во время беременности, чтобы рос эмбрион.[15]

Гликоген состоит из разветвленной цепочки глюкозных остатков. Он находится в печени и мышцах.

  • Это энергетический запас для животных.
  • Это основная форма углевода, отложенного в теле животного.
  • Он нерастворим в воде. Становится красным при разбавлении с йодом.
  • Он также превращается в глюкозу в процессе гидролиза.

Структурные полисахариды[править | править вики-текст]

Арабиноксиланы[править | править вики-текст]

Арабиноксиланы находятся и в главных, и во второстепенных стенках клеток растений, и они являются сополимерами двух пентозных сахаров: арабиноза и ксилоза.

Целлюлоза[править | править вики-текст]

Строительный материал растений формируется в первую очередь из целлюлозы. Дерево – это основной источник целлюлозы, как и лигнин, в то время как бумага и хлопок почти чистая целлюлоза. Целлюлоза – это полимер, сделанный из повторяющихся глюкозных остатков, соединенных вместе бета-связями. У людей и многих животных не хватает энзимов разорвать бета-связи, поэтому они не перевариваривают целлюлозу. Определенные животные, такие как термиты, могут переварить целлюлозу, потому что в их пищеварительной системе присутствуют энзимы, способные переварить её. Целлюлоза нерастворима в воде. Не меняет цвет при смешивании с йодом. При гидролизе переходит в глюкозу. Это самый распространенный углевод в мире.

Хитин[править | править вики-текст]

Хитин – один из самых встречающихся натуральных полимеров. Он является строительным компонентом многих животных, к примеру экзоскелетов. Он разлагается микроорганизмами в течение долгого времени в окружающей среде. Его распад могут катализировать ферменты под названием хитиназы, которые секретируют такие микроорганизмы как бактерии и грибы, и производят некоторые растения. У некоторых из этих микроорганизмов есть рецепторы, которые расщепляют хитин до простого сахара. При нахождении хитина, они начинают выделять ферменты, расщепляющие его до гликозидных связей, чтобы получить простые сахара и аммиак.

Химически, хитин очень близок хитозану (более водорастворимое производное хитина). Он также очень похож на целлюлозу в том, что это такая же длинная неразветвленная цепочка глюкозных остатков. Оба материала способствуют формированию структуры и силы, защищающие организмы.

Пектины[править | править вики-текст]

Пектины – это совокупность полисахаридов, которые состоят из а-1,4-связей между остатками D-галактопиранозилуроновой кислоты. Они есть во многих важнейших клеточных стенках и в недревесных частях растений.

Кислотные полисахариды[править | править вики-текст]

Кислотные полисахариды – это полисахариды карбоновых групп, фосфатных групп и/или групп серных сложных эфиров.

Бактериальные капсульные полисахариды[править | править вики-текст]

Патогенные бактерии обычно вырабатывают вязкий, слизистый слой полисахаридов. Эта «капсула» скрывает антигеновые белки на поверхности бактерии, которая иначе вызвала бы иммунный ответ и таким образом привела к разрушению бактерии. Капсульные полисахариды водорастворимые, зачастую кислотные, и у них есть молекулярная масса на уровне 100-2000 kDa. Они линейны и состоят из постоянно повторяющихся субъединиц от одного до шести моносахаридов. Существует огромное структурное многообразие; около двух сотен разных полисахаридов производится только одной кишечной палочкой. Смесь капсульных полисахаридов, либо конъюгируется, либо естественным путем используется как вакцина.

Бактерия и многие другие микробы, включая грибы и водоросли, часто секретируют полисахариды, чтобы прилипнуть к поверхностям для предотвращения пересыхания. Люди научились превращать некоторые такие полисахариды в полезные продукты, включая ксантановую камедь, декстран, гуаровая камедь, велановую камедь, дьютановую камедь и пуллулан.

Большинство из этих полисахаридов выделяют полезные вязкоупругие свойства, когда растворяются в воде на очень низком уровне.[20] Это позволяет использовать различные жидкости в ежедневной жизни, к примеру, в таких продуктах как лосьоны, очищающие средства и краски, вязкие в стабильном состоянии, но становятся намного более жидкие при малейшем движении и используются для размешивания или взбалтывания, чтобы наливать, вытирать или расчесывать. Это свойство называется псевдопластичностью; изучение таких материалов называется реология.

Вязкость велановой камеди
Скорость сдвига (rpm) Вязкость (cP)
0.3 23330
0.5 16000
1 11000
2 5500
4 3250
5 2900
10 1700
20 900
50 520
100 310

У самого по себе водянистого раствора полисахаридов есть интересное свойство при сдвиге: после прекращения движения, раствор изначально продолжает кружить в водовороте по инерции, потом замедляет движение благодаря вязкости и полностью меняет направление прямо перед остановкой. Это движение назад происходит благодаря эластичному эффекту цепочек полисахаридов, которые прежде растянулись в растворе, возвращаются назад в расслабленное состояние.

Мембранные полисахариды выполняют другие роли в бактериальной экологии и физиологии. Они служат барьером между клеточной стенкой и окружающим миром, посредником во взаимодействии хозяин-паразит, и образуют строительные компоненты биопленки. Эти полисахариды синтезируются из нуклеотидно-активированных предшественников (их называют нуклеотидные сахара) и, во многих случаях, все ферменты, необходимые для биосинтеза, собрания и транспортировки целого полимера закодированые генами, организованны в специальных группах с геномом организма. Липополисахарид – это один из самых важных мембранных полисахаридов, так как он играет ключевую структурную роль для сохранения целостности клетки, а также является важнейшим посредником во взаимодействии между хозяином и паразитом.

Недавно были найдены энзимы, которые образуют A-группу (гомоплимерные) и B-группу (гетерополимерные) O-антигенов и определены их метаболические пути.[21] Экзополисахаридный альгинат – это линейный полисахарид, связанный β-1,4-остатками D-маннуроновой и L-гулуроновой кислот, и ответственный за мукоидный фенотип последней стадии муковисцедоза. Pel и psl локусы – две недавно обнаруженные генетические группы, которые также закодированы экзополисахаридами, и как выяснилось, являются очень важным составляющим биопленки. Рамнолипиды – это биологическое поверхностно-активное вещество, чье производство строго регулируется на транскрипционном уровне, но прецизионную роль, которую они играют во время болезни до нынешнего момента до сих пор не изучена. Протеиновое гликозилирование, в частности пилин и флагеллин, стали объектом исследования нескольких групп начиная где-то с 2007 г., и как оказалось, они очень важны для адгезии и инвазии во время бактериальной инфекции.[22]

Примечания[править | править вики-текст]

  1. Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9.
  2. Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9.
  3. IUPAC Gold Book internet edition: "homopolysaccharide (homoglycan)".
  4. IUPAC Gold Book internet edition: "heteropolysaccharide (heteroglycan)".
  5. Matthews, C. E.; K. E. Van Holde; K. G. Ahern (1999) Biochemistry. 3rd edition. Benjamin Cummings. ISBN 0-8053-3066-6
  6. N.A.Campbell (1996) Biology (4th edition). Benjamin Cummings NY. p.23 ISBN 0-8053-1957-3
  7. 1 2 Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005), Chapter 7: Dietary, Functional and Total fiber.. US Department of Agriculture, National Agricultural Library and National Academy of Sciences, Institute of Medicine, Food and Nutrition Board.
  8. 1 2 Eastwood M, Kritchevsky D (2005). «Dietary fiber: how did we get where we are?». Annu Rev Nutr 25: 1–8. DOI:10.1146/annurev.nutr.25.121304.131658. PMID 16011456.
  9. Anderson JW (2009). «Health benefits of dietary fiber». Nutr Rev 67 (4): 188–205. DOI:10.1111/j.1753-4887.2009.00189.x. PMID 19335713.
  10. Weickert MO, Pfeiffer AF (2008). «Metabolic effects of dietary fiberand any other substance that consume and prevention of diabetes». J Nutr 138 (3): 439–42. PMID 18287346.
  11. Dietary Benefits of Fucoidan from Sulfated Polysaccharides.
  12. Jones PJ, Varady KA (2008). «Are functional foods redefining nutritional requirements?» (PDF). Appl Physiol Nutr Metab 33 (1): 118–23. DOI:10.1139/H07-134. PMID 18347661.
  13. Anatomy and Physiology. Saladin, Kenneth S. McGraw-Hill, 2007.
  14. Animal starch. Merriam Webster. Проверено 11 мая 2014.
  15. 1 2 Campbell Neil A. Biology: Exploring Life. — Boston, Massachusetts: Pearson Prentice Hall, 2006. — ISBN 0-13-250882-6.
  16. Moses SW, Bashan N, Gutman A (December 1972). «Glycogen metabolism in the normal red blood cell». Blood 40 (6): 836–43. PMID 5083874.
  17. http://jeb.biologists.org/cgi/reprint/129/1/141.pdf
  18. Miwa I, Suzuki S (November 2002). «An improved quantitative assay of glycogen in erythrocytes». Annals of Clinical Biochemistry 39 (Pt 6): 612–3. DOI:10.1258/000456302760413432. PMID 12564847.
  19. Page 12 in: Exercise physiology: energy, nutrition, and human performance, By William D. McArdle, Frank I. Katch, Victor L. Katch, Edition: 6, illustrated, Published by Lippincott Williams & Wilkins, 2006, ISBN 0-7817-4990-5, ISBN 978-0-7817-4990-9, 1068 pages
  20. Viscosity of Welan Gum vs. Concentration in Water. http://www.xydatasource.com/xy-showdatasetpage.php?datasetcode=345115&dsid=80
  21. Guo H, Yi W, Song JK, Wang PG (2008). «Current understanding on biosynthesis of microbial polysaccharides». Curr Top Med Chem 8 (2): 141–51. DOI:10.2174/156802608783378873. PMID 18289083.
  22. Cornelis P (editor). Pseudomonas: Genomics and Molecular Biology. — 1st. — Caister Academic Press, 2008. — ISBN [1]978-1-904455-19-6.

См. также[править | править вики-текст]