Правильный семнадцатиугольник

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Правильный семнадцатиугольник

Пра́вильный семнадцатиуго́льникгеометрическая фигура, принадлежащая к группе правильных многоугольников. Он имеет семнадцать сторон и семнадцать углов, все его углы и стороны равны между собой, все вершины лежат на одной окружности.

Свойства[править | править вики-текст]

Центральный угол α равен .

Отношение длины стороны к радиусу описанной окружности составляет

Правильный семнадцатиугольник можно построить при помощи циркуля и линейки, что было доказано Гауссом в 1796 году. Им же найдено значение косинуса центрального угла семнадцатиугольника:

В этой же работе Гаусс доказал, что если нечётные простые делители числа n являются различными простыми Ферма (числа Ферма), то есть простыми числами вида то правильный n-угольник может быть построен с помощью циркуля и линейки (см. Теорема Гаусса — Ванцеля).

Факты[править | править вики-текст]

  • Гаусс был настолько воодушевлён своим открытием, что в конце жизни завещал, чтобы правильный семнадцатиугольник высекли на его могиле. Скульптор отказался это сделать, утверждая, что построение будет настолько сложным, что результат нельзя будет отличить от окружности.

Построение[править | править вики-текст]

Точное построение[править | править вики-текст]

Siebzehneck-Einfach.svg
  1. Проводим большую окружность k₁ (будущую описанную окружность семнадцатиугольника) с центром O.
  2. Проводим её диаметр AB.
  3. Строим к нему перпендикуляр m, пересекающий k₁ в точках C и D.
  4. Отмечаем точку E — середину DO.
  5. Посередине EO отмечаем точку F и проводим отрезок FA.
  6. Строим биссектрису w₁ угла ∠OFA.
  7. Строим w₂ — биссектрису угла между m и w₁, которая пересекает AB в точке G.
  8. Проводим s — перпендикуляр к w₂ из точки F.
  9. Строим w₃ — биссектрису угла между s и w₂. Она пересекает AB в точке H.
  10. Строим окружность Фалеса (k₂) на диаметре HA. Она пересекается с CD в точках J и K.
  11. Проводим окружность k₃ с центром G через точки J и K. Она пересекается с AB в точках L и N. Здесь важно не перепутать N с M, они расположены очень близко.
  12. Строим касательную к k₃ через N.

Точки пересечения этой касательной с исходной окружностью k₁ — это точки P₃ и P₁₄ искомого семнадцатиугольника. Если принять середину получившейся дуги за P₀ и отложить дугу P₀P₁₄ по окружности три раза, все вершины семнадцатиугольника будут построены.

Примерное построение[править | править вики-текст]

Следующее построение хоть и приблизительно, но гораздо более удобно.

  1. Ставим на плоскости точку M, строим вокруг неё окружность k и проводим её диаметр AB;
  2. Делим пополам радиус AM три раза по очереди по направлению к центру (точки C, D и E).
  3. Делим пополам отрезок EB (точка F).
  4. строим перпендикуляр к AB в точке F.
  • Вкратце: строим перпендикуляр к диаметру на расстоянии 9/16 диаметра от B.
Regular Heptadecagon Using Carlyle Circle.gif

Точки пересечения последнего перпендикуляра с окружностью являются хорошим приближением для точек P₃ и P₁₄.

При этом построении получается относительная ошибка в 0,83%. Углы и стороны получаются таким образом немного больше, чем нужно. При радиусе 332,4 мм сторона получается длиннее на 1 мм.

Анимированное построение Эрхингера[править | править вики-текст]

Построение семнадцатиугольника циркулем и линейкой в 64 шага по Йоханнесу Эрхингеру


Звёздчатые формы[править | править вики-текст]

У правильного семнадцатиугольника существуют 7 правильных звёздчатых форм.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]

  • Karin Reich: Die Entdeckung und frühe Rezeption der Konstruierbarkeit des regelmäßigen 17-Ecks und dessen geometrische Konstruktion durch Johannes Erchinger (1825). В кн.: Mathesis, Festschrift zum siebzigsten Geburtstag von Matthias Schramm. Hrsg. von Rüdiger Thiele, Berlin, Diepholz 2000, стр. 101—118.
  • Weisstein, Eric W. Семнадцатиугольник (англ.) на сайте Wolfram MathWorld.