Правильный тетраэдр

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Правильный тетраэдр
Tetrahedron.gif
Tetrahedron vertfig.png
Тип правильный многогранник
Комбинаторика
Элементы
4 грани
6 рёбер
4 вершины
Χ = 2
Грани правильные треугольники
Конфигурация вершины 3.3.3
Двойственный многогранник тоже правильный тетраэдр
Классификация
Символ Шлефли {3,3}
Группа симметрии
Количественные данные
Длина ребра
Площадь поверхности
Объём
Телесный угол при вершине ср

Тетраэдр называется правильным, если все его грани — равносторонние треугольники.

У правильного тетраэдра все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны.

Свойства правильного тетраэдра[править | править код]

  • Каждая его вершина является вершиной трех треугольников. А значит, сумма плоских углов при каждой вершине будет равна 180º.
  • В правильный тетраэдр можно вписать октаэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
  • Правильный тетраэдр с ребром х состоит из одного вписанного октаэдра (в центре) с ребром х/2 и четырёх тетраэдров (по вершинам) с ребром х/2.
  • Правильный тетраэдр можно вписать в куб двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба. Все шесть рёбер тетраэдра будут лежать на всех шести гранях куба и равны диагонали грани квадрата.
  • Правильный тетраэдр можно вписать в икосаэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
  • Площадь поверхности равна [1]
  • Объём [1]
  • Высота правильного тетраэдра равна = радиус вписанной сферы + радиус описанной сферы =
  • Радиус вписанной сферы равен [1]
  • Радиус описанной сферы равен [1]
  • Радиус сферы, касающейся рёбер тетраэдра = [1]

Примечания[править | править код]

  1. 1 2 3 4 5 Coxeter, 1948.

Литература[править | править код]