Изгибаемый многогранник

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Изгибаемый многогранникмногогранник (точнее — многогранная поверхность), чью пространственную форму можно изменить непрерывной во времени деформацией, при которой каждая грань не изменяет своих размеров (то есть движется как твёрдое тело), а деформация осуществляется только за счёт непрерывного изменения двугранных углов. Такая деформация называется непрерывным изгибанием многогранника.

Свойства и примеры[править | править код]

В теории изгибаемых многогранников известно немало красивых и нетривиальных утверждений. Ниже приведены наиболее важные из установленных на сегодня фактов, придерживаясь хронологического порядка:

  • Никакой выпуклый многогранник не может быть изгибаемым. Это немедленно вытекает из теоремы Коши об однозначной определённости выпуклого многогранника, доказанной в 1813 году.
  • Из всех известных на сегодняшний день изгибаемых многогранников без самопересечений наименьшее число вершин (девять) имеет многогранник, построенный немецким математиком Клаусом Штеффеном[de][3].
  • Из формулы Шлефли следует, что любой изгибаемый многогранник в процессе изгибания сохраняет так называемую интегральную среднюю кривизну, то есть число, равное , где — длина ребра , — величина внутреннего двугранного угла при ребре , а сумма распространяется на все рёбра многогранника[5].
  • Теорема Сабитова[6]: любой изгибаемый многогранник в процессе изгибания сохраняет свой объём, то есть он будет изгибаться даже если его заполнить несжимаемой жидкостью.
  • В 2012 А. Гайфуллиным доказан многомерный аналог теоремы Сабитова — любой изгибаемый многогранник в размерности в процессе изгибания сохраняет свой объём.[7]

Вариации и обобщения[править | править код]

Всё сказанное выше относилось к многогранникам в трёхмерном евклидовом пространстве. Однако данное выше определение изгибаемого многогранника примени́мо и к многомерным пространствам и к неевклидовым пространствам, таким как сферическое пространство и пространство Лобачевского. Для них также известны как нетривиальные теоремы, так и открытые вопросы. Например:

  • Изгибаемые многогранники существуют во всех размерностях, как в евклидовом пространстве, так и в сферическом и в геометрии Лобачевского. Примеры аналогов изгибаемых октаэдров Брикара в трёхмерной сфере и в пространстве Лобачевского были построены Штахелем. Первый пример изгибаемого самопересекающегося четырёхмерного многогранника был построен А. Вальц. Наконец, примеры изгибаемых многогранников во всех размерностях и во всех трёх геометриях (евклидовой, сферической, Лобачевского) были построены Гайфуллиным.[8][9]
  • В сферическом пространстве любой размерности существует изгибаемый многогранник, объём которого непостоянен в процессе изгибания. Пример такого самопересекающегося многогранника в размерности 3 был построен в 1997 году Александровым[10], а пример несамопересекающегося многогранника в сферическом пространстве любой размерности — А. А. Гайфуллиным в его работе 2015 года[11]. Напротив, в трёхмерном пространстве Лобачевского, и вообще в пространстве Лобачевского любой нечётной размерности, объём изгибаемого многогранника обязан сохраняться (так же, как и в евклидовом случае).[12][13].

Открытые вопросы[править | править код]

  • Верно ли, что многогранник Штеффена имеет наименьшее число вершин среди всех изгибаемых многогранников, не имеющих самопересечений[14];
  • Верно ли, что если один многогранник, не имеющий самопересечений, получен из другого многогранника, который также не имеет самопересечений, непрерывным изгибанием, то эти многогранники равносоставлены, то есть первый можно разбить на конечное число тетраэдров, каждый из этих тетраэдров независимо от других можно передвинуть в пространстве и получить разбиение второго многогранника[15].
  • В размерностях, начиная с 4, неизвестно, существуют ли изгибаемые несамопересекающиеся многогранники.[12]
  • Неизвестно, имеет ли место теорема о кузнечных мехах (должен ли сохраняться объём при изгибании) в пространствах Лобачевского чётной размерности (4, 6,...).[12]

Сделай сам[править | править код]

Сделать модель изгибаемого многогранника Штеффена совсем не трудно. Опишем это процесс шаг за шагом.

  • Сохраните файл с развёрткой многогранника Штеффена из приведённой выше «галереи изображений».
  • Увеличьте развёртку в 2—3 раза и распечатайте его на принтере (при этом желательно использовать плотную бумагу или полукартон).
  • Вырежьте развёртку по контуру, состоящему из красных, синих и чёрных (сплошных и пунктирных) отрезков.
  • Несколько раз перегните бумагу по оставшимся на развёртке сплошным и пунктирным отрезкам. Выполняя последующие действия следует придавать поверхности такую форму, чтобы сплошные отрезки были «горными хребтами» (то есть выступали из многогранника наружу), а пунктирные отрезки были «долинами» (то есть вдавались бы внутрь многогранника).
  • Изогните поверхность в пространстве и склейте между собой каждые два чёрных отрезка, соединённых на развёртке зелёной дугой окружности.
  • Склейте между собой два синих отрезка.
  • Склейте между собой два красных отрезка.

Модель многогранника Штеффена готова.

Популярная литература[править | править код]

Научная литература[править | править код]

Примечания[править | править код]

  1. R. Bricard. Mémoire sur la théorie de l’octaèdre articulé Архивировано 17 июля 2011 года.. J. Math. Pures Appl. 1897. 3. P. 113—150 (см. также английский перевод).
  2. R. Connelly, The rigidity of polyhedral surfaces, Math. Mag. 52 (1979), no. 5, 275—283.
  3. М. Берже, Геометрия. М.: Мир, 1984. Т. 1. С. 516—517.
  4. В. А. Александров, Новый пример изгибаемого многогранника, Сиб. мат. журн. 1995. Т. 36, No 6. С. 1215—1224.
  5. R. Alexander, Lipschitzian mappings and total mean curvature of polyhedral surfaces. I, Trans. Amer. Math. Soc. 1985. Vol. 288, no. 2, 661—678.
  6. И. Х. Сабитов, Объем многогранника как функция длин его ребер, Фундам. прикл. матем. 1996. Т. 2, № 1. С. 305—307.
  7. А. Гайфуллин. Обобщение теоремы Сабитова на произвольные размерности (2012).
  8. H. Stachel, Flexible octahedra in the hyperbolic space, в книге под ред. A. Prékopa: Non-Euclidean geometries. János Bolyai memorial volume. Papers from the international conference on hyperbolic geometry, Budapest, Hungary, July 6—12, 2002. New York, NY: Springer. Mathematics and its Applications 581, 209—225 (2006).
  9. А. А. Гайфуллин, Изгибаемые кросс-политопы в пространствах постоянной кривизны, Тр. МИАН, 286 (2014), 88–128.
  10. V. Alexandrov, An example of a flexible polyhedron with nonconstant volume in the spherical space, Beitr. Algebra Geom. 38, No.1, 11—18 (1997). ISSN 0138-4821.
  11. А. А. Гайфуллин, Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами, Тр. МИАН, 288 (2015), 67–94.
  12. 1 2 3 "Изгибаемые многогранники", Математические этюды, http://www.etudes.ru/ru/etudes/sabitov/
  13. А. А. Гайфуллин, Аналитическое продолжение объема и гипотеза кузнечных мехов в пространствах Лобачевского, Матем. сб., 206:11 (2015), 61–112
  14. И. Г. Максимов, Неизгибаемые многогранники с малым количеством вершин, Фундам. прикл. матем. 2006. Т. 12, No. 1. С. 143—165.
  15. См. стр. 231 книги под ред. А. Н. Колмогорова и С. П. Новикова: Исследования по метрической теории поверхностей. М.: Мир. 1980. На английском эта гипотеза была впервые опубликована в статье R. Connelly, The rigidity of polyhedral surfaces, Math. Mag. 1979. Vol. 52. P. 275—283.