Звёздчатый многогранник

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Звёздчатый многогра́нник (звёздчатое тело) — это невыпуклый многогранник, грани которого пересекаются между собой. Как и у незвёздчатых многогранников, грани попарно соединяются в рёбрах (при этом внутренние линии пересечения не считаются рёбрами).

Терминология[править | править исходный текст]

Звёздчатой формой многогранника называется многогранник, полученный путём продления граней данного многогранника через рёбра до их следующего пересечения с другими гранями по новым рёбрам.

Правильные звёздчатые многогранники — это звёздчатые многогранники, гранями которых являются одинаковые (конгруэнтные) правильные или звёздчатые многоугольники. В отличие от пяти классических правильных многогранников (платоновых тел), данные многогранники не являются выпуклыми телами.

В 1811 году О. Л. Коши установил, что существуют всего 4 правильных звёздчатых тела (они называются телами Кеплера — Пуансо), которые не являются соединениями платоновых и звёздчатых тел. К ним относятся открытые в 1619 году И. Кеплером малый звёздчатый додекаэдр[en] и большой звёздчатый додекаэдр[en], а также большой додекаэдр[en] и большой икосаэдр, открытые в 1809 году Л. Пуансо. Остальные правильные звёздчатые многогранники являются или соединениями платоновых тел, или соединениями тел Кеплера — Пуансо[1].

Полуправильные звёздчатые многогранники — это звёздчатые многогранники, гранями которых являются правильные или звёздчатые многоугольники, но не обязательно одинаковые. При этом строение всех вершин должно быть одинаковым (условие однородности). Г. Коксетер, М. Лонге-Хиггинс и Дж. Миллер в 1954 году перечислили 53 таких тела и выдвинули гипотезу о полноте своего списка[2]. Только значительно позже в 1969 году Сопову С.П. удалось доказать, что представленный ими список многогранников действительно полон.

Многие формы звёздчатых многогранников подсказывает сама природа. Например, снежинки — это плоские проекции звёздчатых многогранников. Некоторые молекулы имеют правильные структуры объёмных фигур.

На данных рисунках каждая грань для красоты и наглядности окрашена собственным цветом.

First stellation of octahedron.png First stellation of dodecahedron.png Second stellation of dodecahedron.png Third stellation of dodecahedron.png Sixteenth stellation of icosahedron.png First stellation of icosahedron.png

Однородные многогранники — правильные и полуправильные выпуклые многогранники (платоновы и архимедовы тела); правильные и полуправильные звёздчатые многогранники вместе называются однородными многогранниками. У этих тел все грани являются правильными многоугольниками (выпуклыми или звёздчатыми), а все вершины одинаковы (т. е. существуют ортогональные преобразования многогранника в себя, переводящие любую вершину в любую другую). Существует ровно 75 однородных многогранников.

Тетраэдр и куб[править | править исходный текст]

Тетраэдр и гексаэдр (куб) не имеют звёздчатых форм, так как их грани при продлении через рёбра более не пересекаются.

Звёздчатый октаэдр[править | править исходный текст]

Zeroth stellation of octahedron.png

Существует только одна звёздчатая форма октаэдра. Звёздчатый октаэдр был открыт Леонардо да Винчи, затем спустя почти 100 лет переоткрыт И. Кеплером и назван им Stella octangula — звезда восьмиугольная. Отсюда эта форма имеет и второе название: «stella octangula Кеплера»; по сути она является соединением двух тетраэдров.

First stellation of octahedron.png

Звёздчатые формы додекаэдра[править | править исходный текст]

Zeroth stellation of dodecahedron.png

Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр (звёздчатый большой додекаэдр, завершающая форма). В отличие от октаэдра, любая из звёздчатых форм додекаэдра не является соединением платоновых тел, а образует новый многогранник.

First stellation of dodecahedron.png Second stellation of dodecahedron.png Third stellation of dodecahedron.png

У большого додекаэдра гранями являются пятиугольники, которые сходятся по пять в каждой из вершин. У малого звёздчатого и большого звёздчатого додекаэдров грани — пятиконечные звёзды (пентаграммы), которые в первом случае сходятся по 5, а во втором по 3 грани в одной вершине.

Вершины большого звёздчатого додекаэдра совпадают с вершинами описанного додекаэдра.

Звёздчатые формы икосаэдра[править | править исходный текст]

Zeroth stellation of icosahedron.png

Икосаэдр имеет 59 звёздчатых форм, из которых 32 обладают полной, а 27 — неполной икосаэдральной симметрией, что было доказано Коксетером совместно с Дювалем, Флэзером и Петри c применением правил ограничения, установленных Дж. Миллером. Одна из этих звёздчатых форм (20-я, модель 41 по Веннинджеру), называемая большим икосаэдром (см. рисунок), является одним из четырёх правильных звёздчатых многогранников Кеплера — Пуансо. Его гранями являются правильные треугольники, которые сходятся в каждой вершине по пять; это свойство является у большого икосаэдра общим с икосаэдром.

Sixteenth stellation of icosahedron.png

Среди звёздчатых форм также имеются: соединение пяти октаэдров, соединение пяти тетраэдров, соединение десяти тетраэдров. Первая звёздчатая форма — малый триамбический икосаэдр.

First compound stellation of icosahedron.svg Second compound stellation of icosahedron.png Third compound stellation of icosahedron.png

Если каждую из граней продолжить неограниченно, то тело будет окружено большим многообразием отсеков — частей пространства, ограниченных плоскостями граней. Все звёздчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+12+30+60+60 = 472 отсека десяти различных форм и размеров. Большой икосаэдр состоит из всех этих кусков, за исключением последних шестидесяти. Следующая звёздчатая форма — завершающая.

Seventeenth stellation of icosahedron.png

Звёздчатые формы кубооктаэдра[править | править исходный текст]

Zeroth stellation of cuboctahedron.png

Кубооктаэдр имеет 4 звёздчатые формы, удовлетворяющие ограничениям, введённым Миллером. Первая из них является соединением куба и октаэдра.

First stellation of cuboctahedron.png Second stellation of cuboctahedron.png Third stellation of cuboctahedron.png Fourth stellation of cuboctahedron.png

Звёздчатые формы икосододекаэдра[править | править исходный текст]

Eighteenth stellation of icosidodecahedron.png

Икосододекаэдр имеет множество звёздчатых форм, первая из которых есть соединение икосаэдра и додекаэдра.

First stellation of icosidodecahedron.png Eleventh stellation of icosidodecahedron.png

Икосододекаэдр имеет 32 грани, из которых 12 являются правильными пятиугольными гранями, а остальные 20 — правильными треугольниками.

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

Литература[править | править исходный текст]

Ссылки[править | править исходный текст]