Квадратная пирамида

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Квадратная пирамида
Square pyramid.png
Тип Многогранник Джонсона
J1
Свойства выпукла
Группа вращений=
   C4, [4]+, (44)
Комбинаторика
Элементы
8 рёбер
5 вершин
Грани 4 треугольников
1 квадратов
Конфигурация вершины 4 вида (32.4)
1 вида (34)
Развёртка
Square pyramid net.svg
Двойственный многогранник самодвойственна
Классификация
Символ Шлефли ( ) ∨ {4}
Группа симметрии C4v, [4], (*44)
Квадратная пирамида

В геометрии квадратная пирамида — это пирамида, имеющая квадратное основание. Если вершина пирамиды находится на перпендикуляре от центра квадрата, пирамида имеет симметрию C4v.

Многогранник Джонсона (J1)[править | править код]

Если все боковые грани пирамиды — правильные треугольники, пирамида является одним из тел Джонсона (J1).

Тела Джонсона — это 92 строго выпуклых многогранника, имеющие правильные грани, но не являющиеся однородными[en] (т. е. не являются ни платоновыми телами (правильными многогранниками), ни архимедовыми, ни призмами, ни антипризмами).

В 1966 Норман Джонсон[en] опубликовал список, в котором присутствовали все 92 тела, и дал им названия и номера. Он не доказал, что их только 92, но высказал гипотезу, что других нет. Виктор Залгаллер в 1969 году доказал, что список Джонсона полон [1]. Квадратная пирамида Джонсона может быть описана единственным параметром — длиной ребра a. Высота H (от середины квадрата до вершины пирамиды), площадь поверхности A (включая все пять граней) и объём V такой пирамиды равны:

Другие квадратные пирамиды[править | править код]

Другие квадратные (правильные) пирамиды имеют в качестве сторон равнобедренные треугольники.

Для таких пирамид, имеющих длину основания l и высоту h, площадь поверхности и объём вычисляются по формулам:

Связанные многогранники и соты[править | править код]

Правильные приамиды
Треугольная Квадратная Пятиугольная Шестиугольная Семиугольная Восьмиугольная Девятиугольная...
Правильная Равносторонние Равнобедренные
Tetrahedron.svg Square pyramid.png Pentagonal pyramid.png Hexagonal pyramid.png Heptagonal pyramid1.png Octagonal pyramid1.png Enneagonal pyramid1.png
Spherical trigonal pyramid.png Spherical square pyramid.png Spherical pentagonal pyramid.png Spherical hexagonal pyramid.png Spherical heptagonal pyramid.png Spherical octagonal pyramid.png Spherical enneagonal pyramid.png
Square bipyramid.png Tetrakishexahedron.jpg Usech kvadrat piramid.png
Правильный октаэдр можно считать квадратной бипирамидой, т.е. две квадратные пирамиды, соединённые основаниями. Тетракисгексаэдр можно получить из куба путём наращения коротких квадратных пирамид в каждой грани. Квадратная усечённая пирамида.

Квадратная пирамида заполняет пространство (образует соты) с тетраэдром, усечённым кубом или кубооктаэдром [2]

Двойственный многогранник[править | править код]

Квадратная пирамида топологически является самодвойственным многогранником. Длины рёбер двойственной пирамиды отличаются из-за полярного преобразования.

Двойственная
квадратная пирамида
Развёртка двойственного
многогранника
Dual square pyramid.png Dual square pyramid net.png

Топология[править | править код]

Квадратную пирамиду можно представить графом «Колесо» W5.

Примечания[править | править код]

Литература[править | править код]

  • Norman W. Johnson[en]. Convex Solids with Regular Faces // Canadian Journal of Mathematics. — 1966. — Т. 18. — С. 169–200. — ISSN 0008-414X. — DOI:10.4153/cjm-1966-021-8. Содержит оригинальное перечисление 92 тел и гипотезу, что других нет.

Ссылки[править | править код]