Квадратная антипризма

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Однородная квадратная антипризма
Square antiprism.png
Квадратная антипризма
Тип Призматический однородный
многогранник
Свойства выпуклый многогранник
Комбинаторика
Элементы
16 рёбер
8 вершин
Грани 8 треугольников
2 квадрата
Конфигурация вершины 3.3.3.4
Двойственный многогранник Тетрагональный трапецоэдр[en]
Классификация
Символ Шлефли s{2,8}
sr{2,4}
Символ Витхоффа[en] | 2 2 4
Диаграмма Дынкина CDel node h.pngCDel 2x.pngCDel node h.pngCDel 8.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
Группа симметрии D4, [4,2]+, (442), порядок=8

Квадратная антипризма — это второй многогранник в бесконечном ряду антипризм, образованных последовательностью треугольных граней, закрытых с обеих сторон многоугольниками. Квадратная антипризма известна также как антикуб[1].

Если все грани являются правильными многоугольниками, антипризма является полуправильным многогранником или однородным многогранником[en].

Точки на сфере[править | править код]

Если восемь точек разместить на сфере с целью максимизации расстояний между ними в некотором смысле, получившаяся фигура соответствует скорее квадратной антипризме, чем кубу. Специфичные методы распределения точек включают, например, задачу Томпсона[en] (минимизация суммы обратных величин расстояний между точками), максимизацию расстояний от точки до ближайшей или минимизацию суммы всех обратных квадратов расстояний между точками.

Молекулы с квадратной антипризматической геометрией[править | править код]

Квадратная антипризматическая молекулярная геометрия

Согласно теории ОЭПВО молекулярной геометрии[en] в химии, которая основывается на принципе максимизации расстояний между точками, квадратная антипризма является наиболее предпочтительной геометрией, если восемь пар электронов окружают центральный атом. Одна из молекул с такой геометрией — ион октафтороксената (VI) (XeF82−) в соли октафтороксената(VI) нитрозила[en]. Однако молекула эта далека от идеальной квадратной антипризмы[2]. Очень мало ионов имеют кубическую форму, поскольку такая форма привела бы к сильному отталкиванию лигандов. PaF83− является одним из немногих примеров[3].

Кроме того, сера образует восьмиатомные молекулы S8 как наиболее устойчивую аллотропную форму. Молекула S8 имеет структуру, основанную на квадратной антипризме. В этой молекуле атомы занимают восемь вершин антипризмы, а восемь рёбер между рёбрами соответствуют ковалентной связи между атомами серы.

В архитектуре[править | править код]

Центр международной торговли 1

Главное здание в комплексе Центра международной торговли (на месте старого Центра международной торговли, разрушенного 11 сентября 2001) имеет форму очень высокой сужающейся к верху квадратной антипризмы. Здание не является истинной антипризмой, поскольку она сужается к верху — верхний квадрат имеет вдвое меньшую площадь по сравнению с основанием.

Топологически эквивалентные многогранники[править | править код]

Twisted square antiprism.png

Скрученная призма (по часовой стрелке или против часовой стрелки) может иметь то же расположение вершин. Этот многогранник можно рассматривать как форму, собранную из 4 тетраэдров с вырезанными частями. Однако после вырезания тело нельзя разбить на тетраэдры без добавления новых вершин. Тело имеет половину симметрий однородного тела: Dn, [4,2]+[4][5].

Связанные многогранники[править | править код]

Производные многогранники[править | править код]

Скрученно удлинённая четырёхугольная пирамида является правильногранным многогранником (J10 = М24), полученным удлинением квадратной пирамиды. Подобным же образом, скрученно удлинённая четырёхугольная бипирамида (J17 = М242) является дельтаэдром (многогранником, грани которого являются правильными треугольниками), построенным путём замены обоих квадратов квадратной антипризмы квадратными пирамидами.

Плосконосый двуклиноид(J84 = М25) является другим дельтаэдром, который получается заменой двух квадратов квадратной антипризмы парами равносторонних треугольников. Плосконосую квадратную антипризму (J85 = М28) можно рассматривать как квадратную антипризму, полученную путём вставки цепочки равносторонних треугольников. Клинокорона (J86 = М21) и большая клинокорона (J88 = М23) являются другими правильногранными многогранниками, которые, подобно другим квадратным антипризмам, состоят из двух квадратов и чётного числа равносторонних треугольников.

Квадратная антипризма может быть усечена и альтернирована для образования плосконосых антипризм:

Плосконосые антипризмы
Антипризма Усечение
t
Альтернирование[en]
ht
Square antiprism.png
s{2,8}
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 8.pngCDel node.png
Truncated square antiprism.png
ts{2,8}
Snub square antiprism colored.png
ss{2,8}

Аналогичные многогранники[править | править код]

Будучи антипризмой, квадратная антипризма принадлежит семейству многогранников, в которые входят октаэдр (который можно рассматривать как треугольную антипризму), пятиугольная антипризма, шестиугольная антипризма и восьмиугольная антипризма[en].

Семейство однородных антипризм n.3.3.3
Многогранник Digonal antiprism.png Trigonal antiprism.png Square antiprism.png Pentagonal antiprism.png Hexagonal antiprism.png Antiprism 7.png Octagonal antiprism.png Enneagonal antiprism.png Decagonal antiprism.png Hendecagonal antiprism.png Dodecagonal antiprism.png
Мозаика Spherical digonal antiprism.png Spherical trigonal antiprism.png Spherical square antiprism.png Spherical pentagonal antiprism.png Spherical hexagonal antiprism.png Spherical heptagonal antiprism.png Spherical octagonal antiprism.png Infinite antiprism.png
Конфигурация V2.3.3.3 3.3.3.3 4.3.3.3 5.3.3.3 6.3.3.3 7.3.3.3 8.3.3.3 9.3.3.3 10.3.3.3 11.3.3.3 12.3.3.3 ...∞.3.3.3

Квадратная антипризма является первой в ряду плосконосых многогранников и мозаик с вершинной фигурой 3.3.4.3.n.

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

Ссылки[править | править код]