Плосконосый додекаэдр

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Курносый додекаэдр»)
Перейти к: навигация, поиск
Плосконосый додекаэдр
Плосконосый додекаэдр
Плосконосый додекаэдр
Тип Полуправильный многогранник
Грань пятиугольник,
треугольник
Граней
Рёбер
Вершин
Граней при вершине
Телесный угол

4-3:164°10’31"(164.18°)
3-5=152°55’53"(152.93°)

Телесный угол

4-3:164°10’31"(164.18°)
3-5=152°55’53"(152.93°)

Символ Шлефли sr{5,3} или
Символ Визоффа 2 3 5
Диаграмма Коксетера CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Симметрии вращения I, [5,3]+, (532), порядок 60
Двойственный
многогранник
Пентагональный
гексаконтаэдр

Пентагональный гексеконтаэдр
Развёртка Развёртка
Раскраска граней
С раскраской
граней
Вершинная фигура


Вершинная фигура

Плосконосый додекаэдр[1][2], курносый додекаэдр[3] или плосконосый икосододекаэдр — это полуправильный многогранник (архимедово тело), одно из тринадцати выпуклых изогональных[en] непризматических тел, гранями которых являются два или более правильных многоугольника.

Плосконосый додекаэдр имеет 92 грани (наибольшее количество из всех архимедовых тел), 12 из них являются пятиугольниками, а остальные 80 — правильными треугольниками. У него 150 рёбер и 60 вершин.

Многогранник имеет две различные формы, являющиеся зеркальными образами[en] (или «энантиоморфным видом») друг друга. Объединение обоих видов образует соединение двух плосконосых додекаэдров[en], а выпуклая оболочка этой конструкции является ромбоусечённым икосододекаэдром.

Кеплер первоначально назвал его в 1619 по латински dodecahedron simum в своей книге Harmonices Mundi. Гарольд Коксетер заметил, что многогранник можно получить равным образом из додекаэдра или икосаэдра и назвал его плосконосым икосододекаэдром, с вертикальным символом Шлефли .

Плосконосый додекаэдр демонстрация
Snub додекаэдр по витой вправо
вздернутый додекаэдр скручен влево


Декартовы координаты[править | править вики-текст]

Декартовыми координатами вершин плосконосого додекаэдра являются все чётные перестановки

(±2α, ±2, ±2β),
(±(α+β/ϕ+ϕ), ±(−αϕ+β+1/ϕ), ±(α/ϕ+βϕ−1)),
(±(α+β/ϕ−ϕ), ±(αϕ−β+1/ϕ), ±(α/ϕ+βϕ+1)),
(±(−α/ϕ+βϕ+1), ±(−α+β/ϕ−ϕ), ±(αϕ+β−1/ϕ)) и
(±(−α/ϕ+βϕ−1), ±(α−β/ϕ−ϕ), ±(αϕ+β+1/ϕ)),

с чётным числом знаков плюс, где

α = ξ − 1 / ξ

и

β = ξϕ + ϕ2 + ϕ /ξ,

Здесь ϕ = (1 + √5)/2 — золотое сечение, а ξ является вещественным решением уравнения ξ3 − 2ξ = ϕ и это число равно

или, приближённо, 1,7155615.

Этот плосконосый додекаэдр имеет длину ребра примерно 6,0437380841.

Трансформация из ромбоикосидодекаэдра в плосконосый додекаэдр

Если взять нечётные перестановки вышеприведённых координат с чётным числом знаков плюс, получим другую, энантиоморфную форму первого. Хотя это и не сразу очевидно, тело, полученное из чётных перестановок, является тем же самым, что и из нечётных. Тем же образом, зеркальное отображение многогранника будет соответствовать либо чётным перестановкам, либо нечётным.

Площадь поверхности и объём[править | править вики-текст]

Для плосконосого додекаэдра с длиной ребра 1 площадь поверхности равна

а объём равен

,

где ϕ — золотое сечение.

Плосконосый додекаэдр имеет наивысшую сферичность из всех архимедовых тел.

Ортогональные проекции[править | править вики-текст]

Плосконосый додекаэдр имеет две специальные ортогональные проекции, центрированные относительно двух типов граней — треугольных и пятиугольных, соответствующие плоскостям Коксетера A2 и H2.

Ортогональные проекции
Центрирован относительно Треугольной
грани
Пятиугольной
грани
Ребра
Изображение Snub dodecahedron A2.png Snub dodecahedron H2.png Snub dodecahedron e1.png
Проективная
симметрия
[3] [5]+ [2]
Двойственный
многогранник
Dual snub dodecahedron A2.png Dual snub dodecahedron H2.png Dual snub dodecahedron e1.png

Геометрические связи[править | править вики-текст]

Плосконосый додекаэдр может быть получен из двенадцати правильных пятиугольных граней додекаэдра путём их вытягивания наружу[en], так что они перестают касаться друг друга. При вытягивании на подходящее расстояние это даст ромбоикосидодекаэдр, если заполнить полученное пространство между разделёнными рёбрами квадратами, а между разделёнными вершинами — треугольниками. Но чтобы получить плосконосый вид, заполняем только треугольные грани, квадратные промежутки оставляем пустыми. Теперь поворачиваем пятиугольники относительно их центров вместе с треугольниками, пока квадратные промежутки не превратятся в равносторонние треугольники.

Dodecahedron.png
Додекаэдр
Small rhombicosidodecahedron.png
ромбоикосидодекаэдр
(Расширенный додекаэдр)
Snub dodecahedron cw.png
Плосконосый додекаэдр

Плосконосый додекаэдр можно также получить из ромбоусечённого икосододекаэдра путём альтернации[en]. Шестьдесят вершин ромбоусечённого икосододекаэдра образуют многогранник, топологически эквивалентный одному плосконосому додекаэдру. Оставшиеся шестьдесят образуют его зеркальное отражение. Получившийся многогранник вершинно транзитивен[en]*, но не однороден, поскольку имеет рёбра разной длины, необходима некоторая деформация, чтобы привести его к однородному многограннику.

Связанные многогранники и мозаики[править | править вики-текст]

Семейство однородных икосаэдральных многогранников
Симметрия[en]: [5,3][en], (*532) [5,3]+, (532)
Uniform polyhedron-53-t0.png Uniform polyhedron-53-t01.png Uniform polyhedron-53-t1.png Uniform polyhedron-53-t12.png Uniform polyhedron-53-t2.png Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Двойственные к однородным многогранникам
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

Этот полуправильный многогранник принадлежит последовательности плосконосых[en] многогранников и мозаик с вершинной фигурой (3.3.3.3.n) и диаграммой Коксетера — Дынкина CDel node h.pngCDel n.pngCDel node h.pngCDel 3.pngCDel node h.png. Эти фигуры и их двойственные имеют (n32) вращательную симметрию[en] и существуют в евклидовой плоскости для n=6 и гиперболической плоскости для любого n, большего 6. Можно считать, что последовательность начинается с n=2, если допустить, что некоторое множество граней вырождается в двуугольники.

n32 симметрии плосконосых мозаик: 3.3.3.3.n
Симметрия
n32
Сферическая Евклидоваn Копактная гиперболич. Парокомп.
232 332 432 532 632 732 832 ∞32
Плосконосые
фигуры
Spherical trigonal antiprism.png Spherical snub tetrahedron.png Spherical snub cube.png Spherical snub dodecahedron.png Uniform tiling 63-snub.png Uniform tiling 73-snub.png Uniform tiling 83-snub.png Uniform tiling i32-snub.png
Конфигурация 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.∞
Фигуры Uniform tiling 432-t0.png Uniform tiling 532-t0.png Spherical pentagonal icositetrahedron.png Spherical pentagonal hexecontahedron.png Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg Ord7 3 floret penta til.png Order-3-infinite floret pentagonal tiling.png
Конфигурация V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.∞

Граф плосконосого додекаэдра[править | править вики-текст]

Граф плосконосого додекаэдра
Изображение
Вершин

60

Рёбер

150

Автоморфизмы

60

Свойства

гамильтонов
регулярный

В теории графов граф плосконосого додекаэдра — это граф вершин и рёбер[en] плосконосого додекаэдра. Он имеет 60 вершин и 150 рёбер и является архимедовым графом [4].

Ортогональные проекции
Snub dodecahedron A2.png Snub dodecahedron H2.png Snub dodecahedron e1.png

См. также[править | править вики-текст]

  • Преобразование плоского многоугольника в многогранник Анимация
  • ccw и cw — вращающиеся плосконосые додекаэдры

Примечания[править | править вики-текст]

Литература[править | править вики-текст]


Ссылки[править | править вики-текст]