Усечённый кубооктаэдр

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Ромбоусечённый кубооктаэдр»)
Перейти к: навигация, поиск
Усечённый кубооктаэдр
Усечённый кубооктаэдр
Усечённый кубооктаэдр
Тип Полуправильный многогранни
Грань квадрат,
шестиугольник,
восьмиугольник
Граней
Рёбер
Вершин
Граней при вершине
Телесный угол

4-6:arccos(-sqrt(6)/3)=144°44’08"
4-8:arccos(-sqrt(2)/3)=135°
6-8:arccos(-sqrt(3)/3)=125°15’51"

Точечная группа
симметрии
Октаэдрическая,
[4,3]+, (432), порядок 24
Двойственный
многогранник
Гекзакисоктаэдр
Ромбоусечённый додекаэдр
Развёртка Развёртка
Раскраска граней
С раскраской
граней
Вершинная фигура


Вершинная фигура

Усечённый кубооктаэдр[1][2], усечённый кубоктаэдр[3] — полуправильный многогранник (архимедово тело) с 12 квадратными гранями, 8 гранями в виде правильного шестиугольника, 6 гранями в виде правильного восьмиугольника, 48 вершинами и 72 рёбрами. Поскольку каждая из граней многогранника имеет центральную симметрию (что эквивалентно повороту на 180°), усечённый кубооктаэдр является зоноэдром.

Другие названия[править | править вики-текст]

Этот многогранник имеет несколько названий:

Название усечённый кубооктаэдр, данное первоначально Иоганном Кеплером, несколько вводит в заблуждение. Усечение кубооктаэдра путём отсечения углов (вершин) не позволяет получить эту однородную фигуру — некоторые грани будут прямоугольниками. Однако полученная фигура топологически эквивалентна усечённому кубооктаэдру и всегда может быть деформирована до состояния, когда грани станут правильными.

Альтернативное название — большой ромбокубооктадр — ссылается на тот факт, что 12 квадратных граней лежат в тех же плоскостях, что и 12 граней ромбододекаэдра, который двойственен кубооктаэдру. Ср. малый ромбокубооктаэдр.

Также существует невыпуклый однородный многогранник[en] с тем же именем — невыпуклый большой ромбокубооктаэдр[en].

Декартовы координаты[править | править вики-текст]

Декартовы координаты вершин усечённого кубооктаэдра, имеющего ребро длины 2 и имеющего центр в начале координат, являются перестановками чисел:

(±1, ±(1+√2), ±(1+2√2))

Площадь и объём[править | править вики-текст]

Площадь A и объём V усечённого кубооктаэдра с ребром длины a равны:

Рассечение[править | править вики-текст]

Усечённый кубооктаэдр можно препарировать (вырезать части), превратив его в центральный ромбокубооктаэдр с 6 квадратными куполами[en] над первичными квадратными гранями, 8 треугольными куполами[en] над треугольными гранями и 12 кубами над вторичными квадратными гранями.

Препарированный усечённый кубооктаэдр может дать тороиды Стюарта[en] рода 5, 7 или 11, если удалить центральный ромбокубооктаэдр и либо квадратные купола, либо треугольные купола, или 12 кубов соответственно. Можно построить много других тороидов с меньшей степенью симметрии путём удаления подмножества этих компонент препарации. Например, удаление половины треугольных куполов создаёт тороид рода 3, который (при правильном выборе удаляемых куполов) имеет тетраэдральную симметрию[8][9].

Тороиды Стюарта
Род 3 Род 5 Род 7 Род 11
Excavated truncated cuboctahedron4.png Excavated truncated cuboctahedron2.png Excavated truncated cuboctahedron3.png Excavated truncated cuboctahedron.png

Однородные раскраски[править | править вики-текст]

Существует только одна однородная раскраска[en] граней этого многогранника, по одному цвету на каждый тип грани.

Существует 2-однородная раскраска тетраэдральной симметрией с раскраской шестиугольников в два цвета.

Ортогональные проекции[править | править вики-текст]

Усечённый кубооктаэдр имеет две специальные ортогональные проекции в A2 и B2 плоскости Коксетера с [6] и [8] проективными симметриями, и множество [2] симметрий можно построить, исходя из различных плоскостей проекции.

Ортогональные проекции
Центрированы относительно Вершины Ребра
4-6
Ребра
4-8
Ребра
6-8
Нормали к грани
4-6
Изображение Cube t012 v.png Cube t012 e46.png Cube t012 e48.png Cube t012 e68.png Cube t012 f46.png
Проективная
симметрия
[2]+ [2] [2] [2] [2]
Центрированы относительно Нормали к
квадрату
Нормали к
восьмиграннику
Квадратной
грани
Шестиугольной
грани
Восьмиугольной
грани
Изображение Cube t012 af4.png Cube t012 af8.png Cube t012 f4.png 3-cube t012.svg 3-cube t012 B2.svg
Проективная
симметрия
[2] [2] [2] [6] [8]

Сферические мозаики[править | править вики-текст]

Усечённый кубооктаэдр можно представить как сферическую мозаику и спроектировать на плоскость с помощью стереографической проекции. Эта проекция конформна, она сохраняет углы, но не сохраняет длины и площади. Прямые линии на сфере проецируются в круговые дуги на плоскости.

Uniform tiling 432-t012.png Truncated cuboctahedron stereographic projection square.png
квадрат-центрированная
Truncated cuboctahedron stereographic projection hexagon.png
шестиугольник-центрированная
Truncated cuboctahedron stereographic projection octagon.png
восьмиугольник-центрированная
Ортогональная проекция Стереографические проекции

Связанные многогранники[править | править вики-текст]

Усечённый кубооктаэдр входит в семейство однородных многогранников, связанных с кубом и правильным октаэдром.

Однородные октаэдральные многогранники
Симметрия: [4,3], (*432) [4,3]+, (432) [3+,4], (3*2)
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg Uniform polyhedron-43-t12.svg Uniform polyhedron-43-t2.svg Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-43-h01.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
{4,3} t{4,3} r{4,3} t{3,4} {3,4} rr{4,3} tr{4,3} sr{4,3} s{3,4}
Двойственные многогранники
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Dodecahedron.svg
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V35

Этот многогранник можно считать членом последовательности однородных вершинных фигур со схемой (4.6.2p) и диаграммой Коксетера — Дынкина CDel node 1.pngCDel p.pngCDel node 1.pngCDel 3.pngCDel node 1.png. Для p < 6 члены последовательности являются общеусечёнными[en] многогранниками (зоноэдрами), показанными ниже как сферические мозаики. Для p > 6 они являются мозаиками на гиперболической плоскости, начиная с усечённой трисемиугольной мозаики[en].

*n32 мутации по симметрии полностью усечённых мозаик: 4.6.2n
Симметрия
*n32[en]
n,3[en]
Сферическая[en] Евклидова Компактная гиперболическая Паракомп. Некомпактная гиперболическая
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*∞32
[∞,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Фигуры Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png H2 tiling 237-7.png H2 tiling 238-7.png H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
Конфигурация 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12[en] 4.6.14[en] 4.6.16[en] 4.6.∞[en] 4.6.24i 4.6.18i 4.6.12i 4.6.6i
Двойственная Spherical hexagonal bipyramid.png Spherical tetrakis hexahedron.png Spherical disdyakis dodecahedron.png Spherical disdyakis triacontahedron.png Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
Конфигурация[en] V4.6.4[en] V4.6.6 V4.6.8[en] V4.6.10 V4.6.12[en] V4.6.14[en] V4.6.16[en] V4.6.∞ V4.6.24i V4.6.18i V4.6.12i V4.6.6i
*n42 симметрии общеусечённых мозаик: 4.8.2n
Симметрия
*n42
[n,4]
Сферическая Евклидова Компактная гиперболическая Паракомп.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]…
*∞42
[∞,4]
Общеусечённая
фигура
Spherical octagonal prism2.png
4.8.4
Uniform tiling 432-t012.png
4.8.6
Uniform tiling 44-t012.png
4.8.8
H2 tiling 245-7.png
4.8.10
H2 tiling 246-7.png
4.8.12
H2 tiling 247-7.png
4.8.14
H2 tiling 248-7.png
4.8.16
H2 tiling 24i-7.png
4.8.∞
Общеусечённые
двойственные
Spherical octagonal bipyramid2.png
V4.8.4
Spherical disdyakis dodecahedron.png
V4.8.6
1-uniform 2 dual.svg
V4.8.8
Order-4 bisected pentagonal tiling.png
V4.8.10
Hyperbolic domains 642.png
V4.8.12
Hyperbolic domains 742.png
V4.8.14
Hyperbolic domains 842.png
V4.8.16
H2checkers 24i.png
V4.8.∞

Граф усечённого кубооктаэдра[править | править вики-текст]

Граф усечённого кубооктаэдра
Изображение
Вершин

48

Рёбер

72

Автоморфизмы

48

Хроматическое число

2

Свойства

кубический
гамильтонов
регулярный,
нуль-симметричный[en]


В теории графов граф усечённого кубооктаэдра (или граф большого ромбокубооктаэдра) — это граф вершин и рёбер[en] усечённого кубооктаэдра. Он имеет 48 вершин и 72 ребра, нульсимметричен[en] и является кубическим архимедовым графом [10].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]